scholarly journals Improved multiscale matched filter for retina vessel segmentation using PSO algorithm

2015 ◽  
Vol 16 (3) ◽  
pp. 253-260 ◽  
Author(s):  
K.S. Sreejini ◽  
V.K. Govindan
Author(s):  
Jiaqi Ding ◽  
Zehua Zhang ◽  
Jijun Tang ◽  
Fei Guo

Changes in fundus blood vessels reflect the occurrence of eye diseases, and from this, we can explore other physical diseases that cause fundus lesions, such as diabetes and hypertension complication. However, the existing computational methods lack high efficiency and precision segmentation for the vascular ends and thin retina vessels. It is important to construct a reliable and quantitative automatic diagnostic method for improving the diagnosis efficiency. In this study, we propose a multichannel deep neural network for retina vessel segmentation. First, we apply U-net on original and thin (or thick) vessels for multi-objective optimization for purposively training thick and thin vessels. Then, we design a specific fusion mechanism for combining three kinds of prediction probability maps into a final binary segmentation map. Experiments show that our method can effectively improve the segmentation performances of thin blood vessels and vascular ends. It outperforms many current excellent vessel segmentation methods on three public datasets. In particular, it is pretty impressive that we achieve the best F1-score of 0.8247 on the DRIVE dataset and 0.8239 on the STARE dataset. The findings of this study have the potential for the application in an automated retinal image analysis, and it may provide a new, general, and high-performance computing framework for image segmentation.


2019 ◽  
Vol 78 (24) ◽  
pp. 34839-34865 ◽  
Author(s):  
Somasis Roy ◽  
Anirban Mitra ◽  
Sudipta Roy ◽  
Sanjit Kumar Setua

2021 ◽  
Author(s):  
Jie Wang ◽  
Chaoliang Zhong ◽  
Cheng Feng ◽  
Jun Sun ◽  
Yasuto Yokota

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yuliang Ma ◽  
Zhenbin Zhu ◽  
Zhekang Dong ◽  
Tao Shen ◽  
Mingxu Sun ◽  
...  

Aiming at the current problem of insufficient extraction of small retinal blood vessels, we propose a retinal blood vessel segmentation algorithm that combines supervised learning and unsupervised learning algorithms. In this study, we use a multiscale matched filter with vessel enhancement capability and a U-Net model with a coding and decoding network structure. Three channels are used to extract vessel features separately, and finally, the segmentation results of the three channels are merged. The algorithm proposed in this paper has been verified and evaluated on the DRIVE, STARE, and CHASE_DB1 datasets. The experimental results show that the proposed algorithm can segment small blood vessels better than most other methods. We conclude that our algorithm has reached 0.8745, 0.8903, and 0.8916 on the three datasets in the sensitivity metric, respectively, which is nearly 0.1 higher than other existing methods.


Sign in / Sign up

Export Citation Format

Share Document