scholarly journals A Multichannel Deep Neural Network for Retina Vessel Segmentation via a Fusion Mechanism

Author(s):  
Jiaqi Ding ◽  
Zehua Zhang ◽  
Jijun Tang ◽  
Fei Guo

Changes in fundus blood vessels reflect the occurrence of eye diseases, and from this, we can explore other physical diseases that cause fundus lesions, such as diabetes and hypertension complication. However, the existing computational methods lack high efficiency and precision segmentation for the vascular ends and thin retina vessels. It is important to construct a reliable and quantitative automatic diagnostic method for improving the diagnosis efficiency. In this study, we propose a multichannel deep neural network for retina vessel segmentation. First, we apply U-net on original and thin (or thick) vessels for multi-objective optimization for purposively training thick and thin vessels. Then, we design a specific fusion mechanism for combining three kinds of prediction probability maps into a final binary segmentation map. Experiments show that our method can effectively improve the segmentation performances of thin blood vessels and vascular ends. It outperforms many current excellent vessel segmentation methods on three public datasets. In particular, it is pretty impressive that we achieve the best F1-score of 0.8247 on the DRIVE dataset and 0.8239 on the STARE dataset. The findings of this study have the potential for the application in an automated retinal image analysis, and it may provide a new, general, and high-performance computing framework for image segmentation.

Author(s):  
Yunfei Fu ◽  
Hongchuan Yu ◽  
Chih-Kuo Yeh ◽  
Tong-Yee Lee ◽  
Jian J. Zhang

Brushstrokes are viewed as the artist’s “handwriting” in a painting. In many applications such as style learning and transfer, mimicking painting, and painting authentication, it is highly desired to quantitatively and accurately identify brushstroke characteristics from old masters’ pieces using computer programs. However, due to the nature of hundreds or thousands of intermingling brushstrokes in the painting, it still remains challenging. This article proposes an efficient algorithm for brush Stroke extraction based on a Deep neural network, i.e., DStroke. Compared to the state-of-the-art research, the main merit of the proposed DStroke is to automatically and rapidly extract brushstrokes from a painting without manual annotation, while accurately approximating the real brushstrokes with high reliability. Herein, recovering the faithful soft transitions between brushstrokes is often ignored by the other methods. In fact, the details of brushstrokes in a master piece of painting (e.g., shapes, colors, texture, overlaps) are highly desired by artists since they hold promise to enhance and extend the artists’ powers, just like microscopes extend biologists’ powers. To demonstrate the high efficiency of the proposed DStroke, we perform it on a set of real scans of paintings and a set of synthetic paintings, respectively. Experiments show that the proposed DStroke is noticeably faster and more accurate at identifying and extracting brushstrokes, outperforming the other methods.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1365
Author(s):  
Tao Zheng ◽  
Zhizhao Duan ◽  
Jin Wang ◽  
Guodong Lu ◽  
Shengjie Li ◽  
...  

Semantic segmentation of room maps is an essential issue in mobile robots’ execution of tasks. In this work, a new approach to obtain the semantic labels of 2D lidar room maps by combining distance transform watershed-based pre-segmentation and a skillfully designed neural network lidar information sampling classification is proposed. In order to label the room maps with high efficiency, high precision and high speed, we have designed a low-power and high-performance method, which can be deployed on low computing power Raspberry Pi devices. In the training stage, a lidar is simulated to collect the lidar detection line maps of each point in the manually labelled map, and then we use these line maps and the corresponding labels to train the designed neural network. In the testing stage, the new map is first pre-segmented into simple cells with the distance transformation watershed method, then we classify the lidar detection line maps with the trained neural network. The optimized areas of sparse sampling points are proposed by using the result of distance transform generated in the pre-segmentation process to prevent the sampling points selected in the boundary regions from influencing the results of semantic labeling. A prototype mobile robot was developed to verify the proposed method, the feasibility, validity, robustness and high efficiency were verified by a series of tests. The proposed method achieved higher scores in its recall, precision. Specifically, the mean recall is 0.965, and mean precision is 0.943.


2021 ◽  
pp. 1-15
Author(s):  
Wenjun Tan ◽  
Luyu Zhou ◽  
Xiaoshuo Li ◽  
Xiaoyu Yang ◽  
Yufei Chen ◽  
...  

BACKGROUND: The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research. PURPOSE: Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances. METHODS: First, we present the annotated reference dataset of lung CT and CTA images. A subset of the dataset consisting 7,307 slices for training and 3,888 slices for testing was made available for participants. Second, by analyzing the performance comparison of different convolutional neural networks from 12 different institutions for pulmonary vascular segmentation, the reasons for some defects and improvements are summarized. The models are mainly based on U-Net, Attention, GAN, and multi-scale fusion network. The performance is measured in terms of Dice coefficient, over segmentation ratio and under segmentation rate. Finally, we discuss several proposed methods to improve the pulmonary vessel segmentation results using deep neural networks. RESULTS: By comparing with the annotated ground truth from both lung CT and CTA images, most of 12 deep neural network algorithms do an admirable job in pulmonary vascular extraction and segmentation with the dice coefficients ranging from 0.70 to 0.85. The dice coefficients for the top three algorithms are about 0.80. CONCLUSIONS: Study results show that integrating methods that consider spatial information, fuse multi-scale feature map, or have an excellent post-processing to deep neural network training and optimization process are significant for further improving the accuracy of pulmonary vascular segmentation.


2021 ◽  
Author(s):  
Xin Zhang ◽  
◽  
Ting Zhang ◽  
Jiang Lu ◽  
Xingang Fu ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1367
Author(s):  
Stefan Rothe ◽  
Qian Zhang ◽  
Nektarios Koukourakis ◽  
Jürgen W. Czarske

Multimode fibers are regarded as the key technology for the steady increase in data rates in optical communication. However, light propagation in multimode fibers is complex and can lead to distortions in the transmission of information. Therefore, strategies to control the propagation of light should be developed. These strategies include the measurement of the amplitude and phase of the light field after propagation through the fiber. This is usually done with holographic approaches. In this paper, we discuss the use of a deep neural network to determine the amplitude and phase information from simple intensity-only camera images. A new type of training was developed, which is much more robust and precise than conventional training data designs. We show that the performance of the deep neural network is comparable to digital holography, but requires significantly smaller efforts. The fast characterization of multimode fibers is particularly suitable for high-performance applications like cyberphysical systems in the internet of things.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jiajia Ni ◽  
Jianhuang Wu ◽  
Jing Tong ◽  
Mingqiang Wei ◽  
Zhengming Chen

Vessel segmentation is a fundamental, yet not well-solved problem in medical image analysis, due to the complicated geometrical and topological structures of human vessels. Unlike existing rule- and conventional learning-based techniques, which hardly capture the location of tiny vessel structures and perceive their global spatial structures, we propose Simultaneous Self- and Channel-attention Neural Network (termed SSCA-Net) to solve the multiscale structure-preserving vessel segmentation (MSVS) problem. SSCA-Net differs from the conventional neural networks in modeling image global contexts, showing more power to understand the global semantic information by both self- and channel-attention (SCA) mechanism and offering high performance on segmenting vessels with multiscale structures (e.g., DSC: 96.21% and MIoU: 92.70% on the intracranial vessel dataset). Specifically, the SCA module is designed and embedded in the feature decoding stage to learn SCA features at different layers, in which the self-attention is used to obtain the position information of the feature itself, and the channel attention is designed to guide the shallow features to obtain global feature information. To evaluate the effectiveness of our SSCA-Net, we compare it with several state-of-the-art methods on three well-known vessel segmentation benchmark datasets. Qualitative and quantitative results demonstrate clear improvements of our method over the state-of-the-art in terms of preserving vessel details and global spatial structures.


2020 ◽  
Vol 10 (14) ◽  
pp. 4849 ◽  
Author(s):  
Beom Kwon ◽  
Sanghoon Lee

With the advancement in pose estimation techniques, skeleton-based person identification has recently received considerable attention in many applications. In this study, a skeleton-based person identification method using a deep neural network (DNN) is investigated. In this method, anthropometric features extracted from the human skeleton sequence are used as the input to the DNN. However, training the DNN with insufficient training datasets makes the network unstable and may lead to overfitting during the training phase, causing significant performance degradation in the testing phase. To cope with a shortage in the dataset, we investigate novel data augmentation for skeleton-based person identification by utilizing the bilateral symmetry of the human body. To achieve this, augmented vectors are generated by sharing the anthropometric features extracted from one side of the human body with the other and vice versa. Thereby, the total number of anthropometric feature vectors is increased by 256 times, which enables the DNN to be trained while avoiding overfitting. The simulation results demonstrate that the average accuracy of person identification is remarkably improved up to 100% based on the augmentation on public datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Neda Emami ◽  
Reza Ferdousi

AbstractAptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, aptamers have high potentials in biosensing, therapeutic, and diagnostic fields. Here, we present AptaNet—a new deep neural network—to predict the aptamer–protein interaction pairs by integrating features derived from both aptamers and the target proteins. Aptamers were encoded by using two different strategies, including k-mer and reverse complement k-mer frequency. Amino acid composition (AAC) and pseudo amino acid composition (PseAAC) were applied to represent target information using 24 physicochemical and conformational properties of the proteins. To handle the imbalance problem in the data, we applied a neighborhood cleaning algorithm. The predictor was constructed based on a deep neural network, and optimal features were selected using the random forest algorithm. As a result, 99.79% accuracy was achieved for the training dataset, and 91.38% accuracy was obtained for the testing dataset. AptaNet achieved high performance on our constructed aptamer-protein benchmark dataset. The results indicate that AptaNet can help identify novel aptamer–protein interacting pairs and build more-efficient insights into the relationship between aptamers and proteins. Our benchmark dataset and the source codes for AptaNet are available in: https://github.com/nedaemami/AptaNet.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3104
Author(s):  
Nesrine Amor ◽  
Muhammad Tayyab Noman ◽  
Michal Petru

This paper deals with the prediction of methylene blue (MB) dye removal under the influence of titanium dioxide nanoparticles (TiO2 NPs) through deep neural network (DNN). In the first step, TiO2 NPs were prepared and their morphological properties were analysed by scanning electron microscopy. Later, the influence of as synthesized TiO2 NPs was tested against MB dye removal and in the final step, DNN was used for the prediction. DNN is an efficient machine learning tools and widely used model for the prediction of highly complex problems. However, it has never been used for the prediction of MB dye removal. Therefore, this paper investigates the prediction accuracy of MB dye removal under the influence of TiO2 NPs using DNN. Furthermore, the proposed DNN model was used to map out the complex input-output conditions for the prediction of optimal results. The amount of chemicals, i.e., amount of TiO2 NPs, amount of ehylene glycol and reaction time were chosen as input variables and MB dye removal percentage was evaluated as a response. DNN model provides significantly high performance accuracy for the prediction of MB dye removal and can be used as a powerful tool for the prediction of other functional properties of nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document