Hairy vetch (Vicia villosa Roth.) cover crop residue management for improving weed control and yield in no-tillage tomato (Lycopersicon esculentum Mill.) production

2010 ◽  
Vol 33 (2) ◽  
pp. 94-102 ◽  
Author(s):  
E. Campiglia ◽  
F. Caporali ◽  
E. Radicetti ◽  
R. Mancinelli
2008 ◽  
Vol 318 (1-2) ◽  
pp. 169-184 ◽  
Author(s):  
H. Marjolein Kruidhof ◽  
Lammert Bastiaans ◽  
Martin J. Kropff

1993 ◽  
Vol 7 (4) ◽  
pp. 879-883 ◽  
Author(s):  
John R. Teasdale

Weed management treatments with various degrees of herbicide inputs were applied with or without a hairy vetch cover crop to no-tillage corn in four field experiments at Beltsville, MD. A hairy vetch living mulch in the no-treatment control or a dead mulch in the mowed treatment improved weed control during the first 6 wk of the season but weed control deteriorated in these treatments thereafter. Competition from weeds and/or uncontrolled vetch in these treatments without herbicides reduced corn yield in three of four years by an average of 46% compared with a standard PRE herbicide treatment of 0.6 kg ai/ha of paraquat plus 1.1 kg ai/ha of atrazine plus 2.2 kg ai/ha of metolachlor. Reducing atrazine and metolachlor to one-fourth the rate of the standard treatment in the absence of cover crop reduced weed control in three of four years and corn yield in two of four years compared with the standard treatment. Hairy vetch had little influence on weed control or corn yield with any herbicide treatments.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 195-199 ◽  
Author(s):  
John R. Teasdale ◽  
C. Edward Beste ◽  
William E. Potts

Total weed density increased after 1 yr of no-tillage and after 2 yr of conventional tillage in a 4-yr experiment with repeated assignment of the same treatment to the same plots. Large crabgrass, goosegrass, and carpetweed densities were higher in the no-tillage compared with the conventional-tillage treatment in at least 1 yr whereas common lambsquarters density was greater in the conventional-tillage treatment the last year of the experiment. Within the no-tillage treatment, rye or hairy vetch residue reduced total weed density an average of 78% compared to the treatment without cover crop when cover crop biomass exceeded 300 g m–2and when residue covered more than 90% of the soil. Goosegrass, stinkgrass, and carpetweed densities were reduced by cover crop residue in at least 1 yr whereas large crabgrass was unaffected. Common lambsquarters density increased where rye was grown as a cover crop prior to conventional tillage. Despite differences in weed density among treatments, weed biomass was equivalent in all treatments during the last 2 yr.


2007 ◽  
Vol 21 (3) ◽  
pp. 606-611 ◽  
Author(s):  
Wilson E. Judice ◽  
James L. Griffin ◽  
Luke M. Etheredge ◽  
Curtis A. Jones

2020 ◽  
Vol 118 (1) ◽  
pp. 39-55 ◽  
Author(s):  
Emanuele Radicetti ◽  
Enio Campiglia ◽  
Alireza Safahani Langeroodi ◽  
József Zsembeli ◽  
Nóra Mendler-Drienyovszki ◽  
...  

2011 ◽  
Vol 59 (14) ◽  
pp. 7910-7915 ◽  
Author(s):  
Thomas L. Potter ◽  
Clint C. Truman ◽  
Theodore M. Webster ◽  
David D. Bosch ◽  
Timothy C. Strickland

2018 ◽  
Vol 34 (6) ◽  
pp. 492-500 ◽  
Author(s):  
Alireza Safahani Langeroodi ◽  
Emanuele Radicetti ◽  
Enio Campiglia

AbstractIn the conventional cropping systems, increased costs and resource pollution are attributed to the intensive use of chemical inputs. The adoption of cover crops could be a part of a suitable strategy for improving the sustainability of the agro-ecosystems due to their ability to affect nutrient and weed management. A 2-yr field experiments were conducted in Gorgan, North of Iran, with the aim of assessing the effect of cover crop residue management and herbicide rates on weed management and the yield of tomato crop. The treatments consisted in: (a) three winter soil management: two cover crops [annual medic (Medicago scutellata L.) and barley (Hordeum vulgare L.)] and no covered soil; (b) two soil tillage (no-tillage, where cover crop residues were left in strips on the soil surface, and conventional tillage, where cover crop residues were green manured at 30 cm of soil depth); and (c) three pre-emergence herbicide rates (no-herbicide application, half rate recommended or full rate recommended ). Cover crops were sown in early September and mechanically suppressed in March about 2 weeks before tomato transplanting. At cover crop suppression, annual medic showed the highest aboveground biomass [569 g m−2 of dry matter (DM)], while barley showed the lowest weed content (32 g m−2 of DM). At tomato harvesting, weed density and aboveground biomass ranged from 6.9 to 61.5 plants m−2 and from 33.6 and 1157.0 g m−2 of DM, respectively. Cover crop residues placed on soil surface suppressed weeds more effectively than incorporated residues, especially in barley, mainly due to the physical barrier of residues which reduced the stimulation of weed germination and establishment. As expected, herbicide rate decreased both weed density and biomass, even if the adoption of annual medic and barley cover crops before the tomato cultivation could allow a possible reduction of herbicide rate while maintaining similar fruit yield. Tomato yield was higher in annual medic than barley and no cover regardless of tillage management (on average 62.3, 51.8 and 50.1 t ha−1 of fresh matter, respectively) probably due to an abundant availability of soil nitrogen throughout the tomato cultivation. This was confirmed by high and constant values of tomato N status grown in annual medic and evaluated using SPAD chlorophyll meter. Although further research of cover crop residue management is required to obtain a better understanding on herbicide rate reduction, these preliminary results could be extended to other vegetable crops which have similar requirements of tomato.


2020 ◽  
Vol 89 (4) ◽  
pp. 394-402
Author(s):  
Rafael A. Muchanga ◽  
Yoshitaka Uchida ◽  
Toshiyuki Hirata ◽  
Ryusuke Hatano ◽  
Hajime Araki

Sign in / Sign up

Export Citation Format

Share Document