How cover crop residue management and herbicide rate affect weed management and yield of tomato (Solanum lycopersicon L.) crop

2018 ◽  
Vol 34 (6) ◽  
pp. 492-500 ◽  
Author(s):  
Alireza Safahani Langeroodi ◽  
Emanuele Radicetti ◽  
Enio Campiglia

AbstractIn the conventional cropping systems, increased costs and resource pollution are attributed to the intensive use of chemical inputs. The adoption of cover crops could be a part of a suitable strategy for improving the sustainability of the agro-ecosystems due to their ability to affect nutrient and weed management. A 2-yr field experiments were conducted in Gorgan, North of Iran, with the aim of assessing the effect of cover crop residue management and herbicide rates on weed management and the yield of tomato crop. The treatments consisted in: (a) three winter soil management: two cover crops [annual medic (Medicago scutellata L.) and barley (Hordeum vulgare L.)] and no covered soil; (b) two soil tillage (no-tillage, where cover crop residues were left in strips on the soil surface, and conventional tillage, where cover crop residues were green manured at 30 cm of soil depth); and (c) three pre-emergence herbicide rates (no-herbicide application, half rate recommended or full rate recommended ). Cover crops were sown in early September and mechanically suppressed in March about 2 weeks before tomato transplanting. At cover crop suppression, annual medic showed the highest aboveground biomass [569 g m−2 of dry matter (DM)], while barley showed the lowest weed content (32 g m−2 of DM). At tomato harvesting, weed density and aboveground biomass ranged from 6.9 to 61.5 plants m−2 and from 33.6 and 1157.0 g m−2 of DM, respectively. Cover crop residues placed on soil surface suppressed weeds more effectively than incorporated residues, especially in barley, mainly due to the physical barrier of residues which reduced the stimulation of weed germination and establishment. As expected, herbicide rate decreased both weed density and biomass, even if the adoption of annual medic and barley cover crops before the tomato cultivation could allow a possible reduction of herbicide rate while maintaining similar fruit yield. Tomato yield was higher in annual medic than barley and no cover regardless of tillage management (on average 62.3, 51.8 and 50.1 t ha−1 of fresh matter, respectively) probably due to an abundant availability of soil nitrogen throughout the tomato cultivation. This was confirmed by high and constant values of tomato N status grown in annual medic and evaluated using SPAD chlorophyll meter. Although further research of cover crop residue management is required to obtain a better understanding on herbicide rate reduction, these preliminary results could be extended to other vegetable crops which have similar requirements of tomato.

2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Maninder Singh ◽  
Anita Jaswal ◽  
Arshdeep Singh

Crop residue management (CRM) through conservation agriculture can improve soil productivity and crop production by preserving soil organic matter (SOM) levels. Two major benefits of surface-residue management are improved organic matter (OM) near the soil surface and boosted nutrient cycling and preservation. Larger microbial biomass and activity near the soil surface act as a pool for nutrients desirable in crop production and enhance structural stability for increased infiltration. In addition to the altered nutrient distribution within the soil profile, changes also occur in the chemical and physical properties of the soil. Improved soil C sequestration through enhanced CRM is a cost-effective option for reducing agriculture's impact on the environment. Ideally, CRM practices should be selected to optimize crop yields with negligible adverse effects on the environment. Crop residues of common agricultural crops are chief resources, not only as sources of nutrients for subsequent crops but also for amended soil, water and air quality. Maintaining and managing crop residues in agriculture can be economically beneficial to many producers and more importantly to society. Improved residue management and reduced tillage practices should be encouraged because of their beneficial role in reducing soil degradation and increasing soil productivity. Thus, farmers have a responsibility in making management decisions that will enable them to optimize crop yields and minimize environmental impacts. Multi-disciplinary and integrated efforts by a wide variety of scientists are required to design the best site-specific systems for CRM practices to enhance agricultural productivity and sustainability while minimizing environmental impacts.


2011 ◽  
Vol 35 (2) ◽  
pp. 623-634 ◽  
Author(s):  
Tiago Zschornack ◽  
Cimélio Bayer ◽  
Josiléia Acordi Zanatta ◽  
Frederico Costa Beber Vieira ◽  
Ibanor Anghinoni

Winter cover crops are sources of C and N in flooded rice production systems, but very little is known about the effect of crop residue management and quality on soil methane (CH4) and nitrous oxide (N2O) emissions. This study was conducted in pots in a greenhouse to evaluate the influence of crop residue management (incorporated into the soil or left on the soil surface) and the type of cover-crop residues (ryegrass and serradella) on CH4 and N2O emissions from a flooded Albaqualf soil cultivated with rice (Oryza sativa L.). The closed chamber technique was used for air sampling and the CH4 and N2O concentrations were analyzed by gas chromatography. Soil solution was sampled at two soil depths (2 and 20 cm), simultaneously to air sampling, and the contents of dissolved organic C (DOC), NO3-, NH4+, Mn2+, and Fe2+ were analyzed. Methane and N2O emissions from the soil where crop residues had been left on the surface were lower than from soil with incorporated residues. The type of crop residue had no effect on the CH4 emissions, while higher N2O emissions were observed from serradella (leguminous) than from ryegrass, but only when the residues were left on the soil surface. The more intense soil reduction verified in the deeper soil layer (20 cm), as evidenced by higher contents of reduced metal species (Mn2+ and Fe2+), and the close relationship between CH4 emission and the DOC contents in the deeper layer indicated that the sub-surface layer was the main CH4 source of the flooded soil with incorporated crop residues. The adoption of management strategies in which crop residues are left on the soil surface is crucial to minimize soil CH4 and N2O emissions from irrigated rice fields. In these production systems, CH4 accounts for more than 90 % of the partial global warming potential (CH4+N2O) and, thus, should be the main focus of research.


Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 502-507 ◽  
Author(s):  
Laura E. Crawford ◽  
Martin M. Williams ◽  
Sam E. Wortman

AbstractThe potential role of fall-seeded cover crops for weed management in edamame [soybean, Glycine max (L.) Merr.] is unknown. Field experiments were conducted over three edamame growing seasons to (1) determine the extent to which cover crop–residue management systems influence edamame emergence while selectively suppressing weed density and biomass, and (2) determine whether cultivars differed in emergence in cover crop–residue management systems. Cover crop treatments included a winter-killed oilseed radish (Raphanus sativus L.), two canola (Brassica napus L.) treatments (early-killed and late-killed), two cereal rye (Secale cereale L.) treatments (early-killed and late-killed), and a bare-soil control. Two spring timings of a cover crop burndown application created the early-killed and late-killed treatments for canola and cereal rye. Twelve soybean cultivars were tested, including 11 edamame cultivars differing in seed size and a grain-type soybean control. Spring residue biomass in cover crop treatments ranged from 438 kg ha−1 for winter-killed radish to 9,003 kg ha−1 for late-killed cereal rye. Cultivars responded similarly to cover crop treatments, and with the exception of late-killed cereal rye, cover crop treatments resulted in similar crop emergence as the bare-soil control. While all cover crop treatments reduced weed biomass 6 wk after planting compared with the bare soil, winter-killed radish and both canola treatments increased weed density. Early-killed cereal rye has potential for weed management in edamame, as evidenced by the fact that the treatment did not interfere with planting or crop establishment, yet reduced weed density 20% and suppressed early-season weed growth 85%.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4836 ◽  
Author(s):  
Marie-Pierre Hiel ◽  
Sophie Barbieux ◽  
Jérôme Pierreux ◽  
Claire Olivier ◽  
Guillaume Lobet ◽  
...  

Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons), soil organic carbon content, nitrate (${\mathrm{NO}}_{3}^{-}$), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the ${\mathrm{NO}}_{3}^{-}$ content, since the effect of fertilization dominated the effect of residue management. To confirm the results and enhance early tendencies, we believe that the experiment should be followed up in the future to observe whether more consistent changes in the whole agro-ecosystem functioning are present on the long term when managing residues with contrasted strategies.


2008 ◽  
Vol 318 (1-2) ◽  
pp. 169-184 ◽  
Author(s):  
H. Marjolein Kruidhof ◽  
Lammert Bastiaans ◽  
Martin J. Kropff

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 464 ◽  
Author(s):  
Santosh Shiwakoti ◽  
Valtcho D. Zheljazkov ◽  
Hero T. Gollany ◽  
Markus Kleber ◽  
Baoshan Xing ◽  
...  

Crop residues are an important source of plant nutrients. However, information on the various methods of residue management on micronutrients in soil and wheat (Triticum aestivum L.) over time is limited. A long-term (84-year) agroecosystem experiment was assessed to determine the impact of fertilizer type and methods of crop residue management on micronutrients over time under dryland winter wheat-fallow rotation. The treatments were: no N application with residue burning in fall (FB), spring (SB), and no residue burn (NB); 45 kg N ha−1 with SB and NB; 90 kg N ha−1 with SB and NB; pea vines; and farmyard manure (FYM) and a nearby undisturbed grass pasture (GP). Wheat grain, straw, and soil samples from 1995, 2005, and 2015 were used to determine tissue total and soil Mehlich III extractable Mn, Cu, B, Fe, and Zn, and soil pH. After 84 years, extractable Mn and B in the top 10 cm of soil decreased in all plots, except for B in FYM and SB. The FYM plots had the highest extractable Mn (114 mg kg−1) in the top 10 cm soil; however, it declined by 33% compared to the GP (171 mg kg−1). Extractable Zn in the top 10 cm of soil increased with FYM while it decreased with inorganic N application in 2015; however, total Zn in grain increased by 7% with inorganic N (90 kg ha−1) application compared to FYM application. The results suggest that residue management had similar impact on soil micronutrients. Inorganic N and FYM application can be integrated to reduce micronutrient losses from cultivation.


2016 ◽  
Vol 27 (2) ◽  
pp. 189-199 ◽  
Author(s):  
MT Uddin ◽  
K Fatema

The study aimed to examine the present status of rice crop residue management and its impact on farmers’ livelihood covering two sub-districts in Mymensingh district of Bangladesh. A total of 100 farmers (50 for crop residue practicing farmers and 50 for the farmers involved in traditional farming) were selected randomly for data collection. A combination of descriptive, statistical and mathematical techniques were applied to achieve the objectives and to get the meaningful results. The results of descriptive statistics showed that retention was found higher in far distance plots from homestead. No retention of crop residues was found in case of Aus and Aman rice. The whole retention was found only in case of Boro rice. The shortage of labour in season and the wage rate were also important factors for the retention of crop residues. However, farmers’ perceptions about the use of crop residues were mostly adding organic matter to the crop field followed by mulching and feeding animal. The recycling of resources among crop retention and livestock has the great potential to return a considerable amount of plant nutrients to the soil in the rice based crop production systems. Due to crop residue practices, crop and livestock both were benefited through resource interdependences. The sampled farmers were benefited from retention of crop residues by improving soil quality, soil moisture, etc.; and farmers used less amounts of fertilizer, irrigation water, etc. for the succeeding crops. Consequently, succeeding crop productivity, profitability and annual income were increased significantly. The result of logit regression model shows that age of household head, farm size, agricultural income and non-farm income were found as significant variables in explaining the variation in crop residue adoption of farm households. To assess the livelihood pattern of sample farm households through asset pentagon approach, noteworthy improvement was found s on different capitals. The study identified some problems regarding crop residue management and finally, recommended that if the farmers get proper training for such management, it would be helpful to improve their livelihood.Progressive Agriculture 27 (2): 189-199, 2016


2020 ◽  
Vol 118 (1) ◽  
pp. 39-55 ◽  
Author(s):  
Emanuele Radicetti ◽  
Enio Campiglia ◽  
Alireza Safahani Langeroodi ◽  
József Zsembeli ◽  
Nóra Mendler-Drienyovszki ◽  
...  

2009 ◽  
Vol 23 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Husrev Mennan ◽  
Mathieu Ngouajio ◽  
Emine Kaya ◽  
Dogan Isık

Organic vegetable producers have limited options for managing weeds. They cite weed management as their number one research priority. Studies were conducted in 2004 and 2005 at the Black Sea Agricultural Research Institute, Samsun, Turkey, to determine the weed suppressive effects of summer cover crops in organic kale production. Treatments consisted of grain sorghum, sudangrass, hairy vetch, grain amaranth, pea, and fallow. Weed density and total weed dry biomass were assessed before and at 14, 28, and 56 d after incorporation (DAI) of the cover crops. Kale was transplanted 14 DAI and hand weeded once after last weed evaluation (56 DAI). All cover crops produced at least 1 ton/ha (t/ha) biomass; grain sorghum produced more dry matter than all other cover crops in both years. After incorporation of the cover crops, hairy vetch and sorghum treatments showed fewer species, lower weed density, and total weed dry biomass compared with other treatments. Cover crops suppressed emergence of common purslane, common lambsquarters, redroot pigweed, European heliotrope, field pennycress, annual sowthistle, black nightshade, shepherd's-purse, wild mustard, sun spurge, Persian speedwell, annual mercury, and jimsonweed up to 56 DAI. Total kale yield in hairy vetch treatments was more than double that of the no cover crop, and was significantly higher than yield from the other cover crop treatments. These results indicate that hairy vetch, grain sorghum, and sudangrass have ability to suppress early-season weeds in organic kale production.


Sign in / Sign up

Export Citation Format

Share Document