scholarly journals Long-term effects of sustainable management practices on soil properties and crop yields in rainfed Mediterranean almond agroecosystems

2021 ◽  
Vol 123 ◽  
pp. 126207
Author(s):  
M. Martínez-Mena ◽  
M. Perez ◽  
M. Almagro ◽  
N. Garcia-Franco ◽  
E. Díaz-Pereira
Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Baojing Gu ◽  
Deli Chen ◽  
Yi Yang ◽  
Peter Vitousek ◽  
Yong-Guan Zhu

Changes in soil properties and processes can influence food and environmental quality, thus, affecting human health and welfare through biogeochemical cascades among soil, food, environment, and human health. However, because many soil properties change much more slowly than do management practices and pollution to soil, the legacy of past influences on soil can have long-term effects on both human health and sustainability. It is essential and urgent to manage soils for health and sustainability through building the soil-food-environment-health nexus.


2008 ◽  
Vol 54 (4) ◽  
pp. 369-379 ◽  
Author(s):  
Jan Lipavský ◽  
Jaromir Kubát ◽  
Jiri Zobač

Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


2004 ◽  
Vol 265 (1-2) ◽  
pp. 101-109 ◽  
Author(s):  
Meng Cifu ◽  
Lu Xiaonan ◽  
Cao Zhihong ◽  
Hu Zhengyi ◽  
Ma Wanzhu

2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50


2021 ◽  
Author(s):  
Nakian Kim ◽  
Gevan D. Behnke ◽  
María B. Villamil

Abstract. Modern agricultural systems rely on inorganic nitrogen (N) fertilization to enhance crop yields, but its overuse may negatively affect soil properties. Our objective was to investigate the effect of long-term N fertilization on key soil properties under continuous corn [Zea mays L.] (CCC) and both the corn (Cs) and soybean [Glycine max L. Merr.] (Sc) phases of a corn-soybean rotation. Research plots were established in 1981 with treatments arranged as a split-plot design in a randomized complete block design with three replications. The main plot was crop rotation (CCC, Cs, and Sc), and the subplots were N fertilizer rates of 0 kg N ha−1 (N0, controls), and 202 kg N ha−1, and 269 kg N ha−1 (N202, and N269, respectively). After 36 years and within the CCC, the yearly addition of N269 compared to unfertilized controls significantly increased cation exchange capacity (CEC, 65 % higher under N269) and acidified the top 15 cm of the soil (pH 4.8 vs. pH 6.5). Soil organic matter (SOM) and total carbon stocks (TCs) were not affected by treatments, yet water aggregate stability (WAS) decreased by 6.7 % within the soybean phase of the CS rotation compared to CCC. Soil bulk density (BD) decreased with increased fertilization by 5 % from N0 to N269. Although ammonium (NH4+) did not differ by treatments, nitrate (NO3−) increased eight-fold with N269 compared to N0, implying increased nitrification. Soils of unfertilized controls under CCC have over twice the available phosphorus level (P) and 40 % more potassium (K) than the soils of fertilized plots (N202 and N269). On average, corn yields increased 60 % with N fertilization compared to N0. Likewise, under N0, rotated corn yielded 45 % more than CCC; the addition of N (N202 and N269) decreased the crop rotation benefit to 17 %. Our results indicated that due to the increased level of corn residues returned to the soil in fertilized systems, long-term N fertilization improved WAS and BD, yet not SOM, at the cost of significant soil acidification and greater risk of N leaching and increased nitrous oxide emissions.


Sign in / Sign up

Export Citation Format

Share Document