scholarly journals Crop Yield and Soil Fertility Status of Long-Term Rice-Rice-Wheat Cropping Systems

2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50

Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 133 ◽  
Author(s):  
Xinlin Zhao ◽  
Guoyin Yuan ◽  
Huoyan Wang ◽  
Dianjun Lu ◽  
Xiaoqin Chen ◽  
...  

This 2-year field experiment investigated the effects of full straw incorporation on soil fertility and crop yield in a rice-wheat (Oryza sativa L.–Triticum aestivum L.) rotation on sandy, loamy soil. Two treatments were tested: (i) straw removal (CK) and (ii) straw incorporation (STR). The STR significantly increased the wheat yield by an average of 58% compared with CK; however, no significant difference was found in the rice yield. Soil available nitrogen, phosphorus, and potassium in the 0–20 cm soil layer increased by more than 15% with STR compared to CK. The soil cation exchange capacity and organic carbon in the 0–20 cm soil layer increased by 8% and 22%, for STR compared to CK, respectively. Straw incorporation significantly elevated the soil saturated water content but decreased the soil bulk density compared with CK. Soil aggregates >2 mm were significantly increased after straw return. STR also notably increased the soil urease, invertase, and catalase activities in the 0–15 cm soil layer by 11.4%, 41.0%, and 12.9%, respectively, and the soil microbial carbon and nitrogen contents in the 0–20 cm soil layer by 59% and 54%. Therefore, full straw incorporation could significantly improve soil fertility and maintain crop yields for the study area.


2001 ◽  
pp. 34-39
Author(s):  
János Lazányi

The crop rotation experiment, established by Vilmos Westsik in 1929, is the best known and most remarkable example of continuous production in Hungary. It is still used to study the effects of organic manure treatment, develop models and predict the likely effects of different cropping systems on soil properties and crop yields. Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of fertilisers, green, straw and farmyard manure. The experiment also provides a resource of yield, plant and soil data sets for scientific research into the soil and plant processes which control soil fertility, and into the sustainability of production without environmental deterioration. The maintenance of Westsik’s crop rotation experiment can be used to illustrate the value of long-term field experiments.


2019 ◽  
pp. 209-217
Author(s):  
Alemayehu Biri ◽  
Kibret Ketema ◽  
Solomon Ayele ◽  
Dagnachew Lule

Participatory rural appraisals (PRA) were conducted in July 14 to 30, 2016 in AGP-II project target districts: Erar waldiya and Dire Teyara in Harari region of Ethiopia. PRA exercises were conducted using various PRA tools which included review of secondary data, focus group discussions, field observations (Transact walk) and pair-wise ranking. The tools were used to identify the biophysical and socio-economic constraints, opportunities and developments within the kebeles. Agricultural and animal productions are common in the surveyed Kebeles of the AGP-II target districts. Mixed farming is widely practiced in the kebeles of both districts. Staple food crops like maize and sorghum, and cash crops like vegetables and khat (Catha edulis Forsk) are commonly produced across all targets of AGP-II districts and also as region as well. Growing maize and sorghum in khat alleys is another cropping system practiced in both districts. The PRA work has also identified various categories of constraints to increasing crop production in the areas. The major bottlenecks include lack of improved crop varieties, low soil fertility, deforestation, moisture stress, disease and insect pests, and lack of awareness on soil fertility crop management. In most of the PRA Kebeles, it was found that continuous cropping, complete removal of crop residues from farm lands, soil erosion, deforestation, absence of fallowing, and inadequate soil fertility management practices are the major causes for low soil fertility and crop yields. In most cases, farmers apply Di-ammonium phosphate (DAP), urea and farmyard manure to improve soil fertility and crop yield. However, very few farmers use integrated application of chemical fertilizers and farmyard manure for crop production. In addition, no scientifically formulated and recommended fertilizer rates are available for the specific soils and environments. Thus, due to the lack of scientifically recommended rates of fertilizers and high costs of mineral fertilizers, farmers often use smaller rates of mineral N and P fertilizers based on haphazard estimations.


2020 ◽  
Vol 66 (No. 1) ◽  
pp. 22-32
Author(s):  
Qingyin Shang ◽  
Xiuxia Yang ◽  
Hui Yan ◽  
Xiaohui Wang

Soil fertility is fundamental in determining crop productivity and sustainability in farming systems. A long-term fertiliser experiment in Chinese double rice-cropping systems initiated in 2011 was used in this study to gain an insight into a complete estimating of soil fertility. The six fertiliser treatments included mineral fertiliser (NP, NK, and NPK), combined NPK with farmyard manure (NPKM) or crop straw (NPKS), and no fertiliser application as a control. Results showed that grain yield averaged 5.5–13.0 t/ha/year, and significant increasing trends were observed in the phosphorus-applied plots (NP, NPK, NPKM, and NPKS), but the treatments without phosphorus applied (control and NK) resulted in declining trends in both early- and late-rice yields. After long-term rice cultivation, the contents of total and available phosphorus significantly declined in phosphorus-deficient plots compared to other treatments. Regression analysis showed that the improvement in grain yields was positively correlated with the increased soil fertility over treatments. Relative to the NPK treatment, the NPKM treatment greatly enhanced soil fertility from 0.50 to 0.78, and particularly dramatically increased the content of available soil phosphorus. Therefore, the high grain yield and soil fertility can be simultaneously achieved by long-term balanced fertiliser applications in Chinese double rice-cropping systems.  


Author(s):  
V. P. Dmytrenko ◽  
L. P. Odnolyetok ◽  
О. О. Kryvoshein ◽  
A. V. Krukivska

In the paper it is outlined the main methodological positions and the results of the approbation of new approaches to the integrated assessment of the potential of crop yields. There are considered the theoretical foundations of a joint assessment of the biological, ecological and anthropogenic components of the yield potential of agricultural crops which are based on the ecosystem concept and the mathematical model "Weather-Crop Yield" developed by V. P. Dmytrenko. In the considered approaches the peculiarities of the influence of various environmental factors on the formation of crop yields are determined by indicators of various potential yields -  general, climatic and trend (agrotechnological). Each type of yield potential can be used for evaluation of the effectiveness of the conditions of field crop growing for each factor taken into account, as well as the optimality criterion in the agrometeorological adaptation strategies and also as a criterion for the degree of sensitivity of the yield level to the conditions of crops cultivating. The developed approaches are tested on the example of estimation of long-term dynamics of winter wheat yield potential in Ukraine. According to the results of the evaluation of different factors of the potential of the productivity of winter wheat for the periods 1961-1990 and 1991-2010 the dominant importance of organizational and technological processes in comparison with the contribution of changes of agroclimatic conditions has been determined in both periods.


10.12737/2167 ◽  
2014 ◽  
Vol 8 (4) ◽  
pp. 92-98
Author(s):  
Аввакумов ◽  
Oleg Avvakumov

The efficient use of arable land is based on the prediction of crop yields. In extensive farming system the productivity forecasting was carried out by scores of soil fertility, where the level of soil fertility was associated with soil type, and crop yields depended on the leading basic and sustained properties - humus content, cation-exchange capacity, particle size distribution. The system of intensive farming is based on the use of mineral and organic fertilizers. The leading factor in the formation of crop yield is the soil security by mobile soil nutrients on the background of optimal soil parameters. Nowadays, crop yield forecasting is made with the use of the available to plants macro nutrition content. The article presents the results of spring wheat yield prognosis in the Laishevo municipal district with the use of MatLab (matrix operations). The matrix was made according to the data over the last 43 years, it’s moving averages with steps of 11 and 22 years, the content of mobile phosphorus and potassium, determined by the method of Kirsanov. The predictive ability is confirmed by correlation analysis, for the actual number of crop coefficients of correlation with phosphorus and potassium are 0.52 and 0.61, respectively, for the moving average yields are equal to 0.94 and 0.95. A comparison of the actual spring wheat yield (УФ) with the calculated data (the model 1 and the model 2) shows the average deviation of 30%. Similar calculations for the derived series of the moving average of crop yield for the step length of 11 years gives a marked decrease in the deviation of 5-6 %. This convergence of data with the calculated У11 (the model 1 and the model 2, in the left part of the table) indicates for the elimination of weather factor for У11, which influences the overall level of productivity of spring wheat in the forest-steppe zone. The conclusion of the article is the inclusion of agro-climatic conditions (precipitation and temperature) for further calculation of crop yields forecasting.


Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


Sign in / Sign up

Export Citation Format

Share Document