Wheat cultivars with small root length density in the topsoil increased post-anthesis water use and grain yield in the semi-arid region on the Loess Plateau

2021 ◽  
Vol 124 ◽  
pp. 126243
Author(s):  
Yan Fang ◽  
Liyan Liang ◽  
Shuo Liu ◽  
Bingcheng Xu ◽  
Kadambot HM Siddique ◽  
...  
Author(s):  
Rômulo M. O. de Freitas ◽  
Jeferson L. D. Dombroski ◽  
Francisco C. L. de Freitas ◽  
Narjara W. Nogueira ◽  
Tiago S. Leite ◽  
...  

ABSTRACT The resilience of crops to drought depends heavily on the cultural practices adopted, which can have a direct effect on water use efficiency. The aim of this study was to assess the influence of irrigation intervals on the growth, water consumption and water use efficiency of cowpea crops (cv. BRS Guariba) under conventional and no-tillage systems. The experiment was carried out in the semi-arid region of Rio Grande do Norte, Brazil, using a split-plot in a randomised complete block design, with four replications. Treatments consisted of two cultivation systems in the whole plots (conventional and no-tillage) and six irrigation intervals in the subplots (2, 6, 10, 14, 18 and 22 days) which were applied at full bloom. The biomass of the different parts of the plant, leaf area and leaf area index were assessed at 64 days after sowing (DAS) and grain yield, water consumption and water use efficiency at 70 DAS. No-tillage is a promising cultivation technique for cowpea crops, promoting higher grain yield and water use efficiency under semi-arid conditions. This system allows cowpea cultivation with irrigation intervals of 10 or 14 days, with no or small reduction in yield, respectively.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 927
Author(s):  
Jamshad Hussain ◽  
Tasneem Khaliq ◽  
Muhammad Habib ur Rahman ◽  
Asmat Ullah ◽  
Ishfaq Ahmed ◽  
...  

Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region.


2016 ◽  
Vol 18 (03) ◽  
pp. 195-202 ◽  
Author(s):  
Ustun Sahin ◽  
Yasemin Kuslu ◽  
Fatih M. Kiziloglu ◽  
Talip Cakmakci

2019 ◽  
Vol 666 ◽  
pp. 849-857 ◽  
Author(s):  
Amar Razzaq ◽  
Ping Qing ◽  
Muhammad Asad ur Rehman Naseer ◽  
Muhammad Abid ◽  
Mumtaz Anwar ◽  
...  

2003 ◽  
Vol 38 (6) ◽  
pp. 333-339 ◽  
Author(s):  
L. M. V. Martins ◽  
G. R. Xavier ◽  
F. W. Rangel ◽  
J. R. A. Ribeiro ◽  
M. C. P. Neves ◽  
...  

2015 ◽  
Vol 63 (3) ◽  
pp. 259 ◽  
Author(s):  
Babloo Sharma ◽  
Reena Kumari ◽  
Pratibha Kumari ◽  
Santosh K. Meena ◽  
R.M. Singh

1993 ◽  
Vol 38 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Nobumasa Ichizen ◽  
Masaru Ogasawara ◽  
Hitoshi Kuramochi ◽  
Makoto Konnai ◽  
Wataru Sunohara ◽  
...  

2018 ◽  
Author(s):  
Xu Manhou ◽  
Wen Jing

The mid-domain effect (MDE) is a vital hypothesis to explain altitudinal patterns of species diversity of mountainous plants with different gradients, but it is bounded in terms of its application at the plant level. To verify the MDE hypothesis, we chose a typical mountain with obvious elevation gradients and considerable plant coverage as a study area in the east of the Loess Plateau and partitioned various elevation belts across this mountain. Through measuring the species diversity of arbor, shrub and herb communities in forest ecosystems, we explored altitudinal patterns of species diversity of mountainous plants with different gradients. We determined that the family numbers of the herb and shrub communities, as well as the species diversity of the arbor community, reached their maximums at intermediate elevations. The family numbers of the herb and shrub communities presented unimodal patterns across altitudinal gradients, and the highest values occurred at intermediate elevations. The family number of the arbor community showed a monotonic decreasing pattern, and the importance values of dominant families in the shrub and arbor communities presented unimodal patterns, but the lowest values occurred at intermediate elevations. The species diversity of the herb, shrub and arbor communities conformed to unimodal change patterns following altitudinal gradients, but the greatest diversity occurred at high, low and intermediate elevations, respectively. At higher elevations, weeds and grasses grew well, whereas sedges grew well at lower elevations. With respect to the importance values of different arbor life forms, their responses to altitudinal gradients indicated a certain variation pattern, which was greater for evergreen coniferous arbor species than for deciduous coniferous arbor species and deciduous broad-leaved arbor species. It is concluded that the MDE hypothesis of species diversity for mountainous plants is influenced greatly by the community life form and family flora at the plant level in a temperate semi-arid region of the Loess Plateau, China. This conclusion tests and modifies the MDE hypothesis and can be valuable for fueling prediction of biodiversity models and for the comparison with similar studies in different regions.


Sign in / Sign up

Export Citation Format

Share Document