scholarly journals Addition of sets via symmetric polynomials — A polynomial method

2010 ◽  
Vol 31 (5) ◽  
pp. 1243-1256
Author(s):  
H. Godinho ◽  
O.R. Gomes
10.37236/9093 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Raúl M. Falcón ◽  
Rebecca J. Stones

This paper deals with different computational methods to enumerate the set $\mathrm{PLR}(r,s,n;m)$ of $r \times s$ partial Latin rectangles on $n$ symbols with $m$ non-empty cells. For fixed $r$, $s$, and $n$, we prove that the size of this set is given by a symmetric polynomial of degree $3m$, and we determine the leading terms (the monomials of degree $3m$ through $3m-9$) using inclusion-exclusion. For $m \leqslant 13$, exact formulas for these symmetric polynomials are determined using a chromatic polynomial method. Adapting Sade's method for enumerating Latin squares, we compute the exact size of $\mathrm{PLR}(r,s,n;m)$, for all $r \leqslant s \leqslant n \leqslant 7$, and all $r \leqslant s \leqslant 6$ when $n=8$. Using an algebraic geometry method together with Burnside's Lemma, we enumerate isomorphism, isotopism, and main classes when $r \leqslant s \leqslant n \leqslant 6$. Numerical results have been cross-checked where possible.


2009 ◽  
Vol 44 (5) ◽  
pp. 583-590 ◽  
Author(s):  
Emmanuel Briand ◽  
Mercedes Rosas

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jan-Willem M. van Ittersum

AbstractThe algebra of so-called shifted symmetric functions on partitions has the property that for all elements a certain generating series, called the q-bracket, is a quasimodular form. More generally, if a graded algebra A of functions on partitions has the property that the q-bracket of every element is a quasimodular form of the same weight, we call A a quasimodular algebra. We introduce a new quasimodular algebra $$\mathcal {T}$$ T consisting of symmetric polynomials in the part sizes and multiplicities.


1977 ◽  
Vol 99 (3) ◽  
pp. 477-484 ◽  
Author(s):  
J. M. Bloom ◽  
W. A. Van Der Sluys

This paper evaluates eight different analytical procedures used in determining elastic stress intensity factors for gradient or nonlinear stress fields. From a fracture viewpoint, the main interest in this problem comes from the nuclear industry where the safety of the nuclear system is of concern. A fracture mechanics analysis is then required to demonstrate the vessel integrity under these postulated accident conditions. The geometry chosen for his study is that of a 10-in. thick flawed plate with nonuniform stress distribution through the thickness. Two loading conditions are evaluated, both nonlinear and both defined by polynomials. The assumed cracks are infinitely long surface defects. Eight methods are used to find the stress intensity factor: 1–maximum stress, 2–linear envelope, 3–linearization over the crack length from ASME Code, Section XI, 4–equivalent linear moment from ASME Code, Section III, Appendix G for thermal loadings, 5–integration method from WRC 175, Appendix 4 for thermal loadings, 6–8-node singularity (quarter-point) isoparametric element in conjunction with the displacement method, 7–polynomial method, and 8–semi-infinite edge crack linear distribution over crack. Comparisons are made between all eight procedures with the finding that the methods can be ranked in order of decreasing conservatism and ease of application as follows: 1–maximum stress, 2–linear envelope, 3–linearization over the crack length, 4–polynomial method, and 5–singularity element method. Good agreement is found between the last three of these methods. The remaining three methods produce nonconservative results.


Sign in / Sign up

Export Citation Format

Share Document