Discrete-time event-triggered higher order sliding mode control for consensus of 2-DOF robotic arms

2020 ◽  
Vol 56 ◽  
pp. 231-241 ◽  
Author(s):  
Keyurkumar Patel ◽  
Axaykumar Mehta
2020 ◽  
Vol 53 (2) ◽  
pp. 6207-6212
Author(s):  
Kiran Kumari ◽  
Bijnan Bandyopadhyay ◽  
Johann Reger ◽  
Abhisek K. Behera

2000 ◽  
Vol 122 (4) ◽  
pp. 776-782 ◽  
Author(s):  
Xinghuo Yu ◽  
Shuanghe Yu

In this paper, a new concept of invariant sliding sector is proposed for the design of discrete time sliding mode control. A methodology is developed which ensures the existence of the invariant sliding sector and conditions to guarantee the existence of the invariant sliding sector are derived. The second-order discrete sliding mode control systems are used to inform the discussion. Simulation results are presented to demonstrate the usefulness of the concept and effectiveness of the methodology proposed. It should be noted that most of the design procedure could be extended to higher order discrete sliding mode control systems. [S0022-0434(00)02004-9]


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7236
Author(s):  
Katarzyna Adamiak ◽  
Andrzej Bartoszewicz

The study presents a novel event-triggered quasi-sliding mode control algorithm for linear discrete time systems. The problem is divided into two main parts. Firstly, the sliding mode control of perturbed discrete time systems is considered. In order to limit the impact of external disturbances to one sampling step only, a reference trajectory-based control law is introduced. The proposed control method drives the system’s representative point to an a priori designed reference position in each control step, thus minimizing the influence of disturbance and improving the robustness. Moreover, the reference trajectory is generated according to a novel reaching law, which ensures the nonswitching movement within the quasi-sliding mode band. In the latter part of the study, the proposed control strategy is supplemented with an event-triggering algorithm. In the modified strategy the control signal is only updated when a certain triggering condition occurs. Therefore, the need for communication between system elements is reduced. As follows, the delays in the digital control process may be reduced as well, without compromising the system’s robustness.


Sign in / Sign up

Export Citation Format

Share Document