scholarly journals Joint pricing and inventory control with a Markovian demand model

2007 ◽  
Vol 182 (1) ◽  
pp. 113-126 ◽  
Author(s):  
Rui Yin ◽  
Kumar Rajaram
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Maryam Ghoreishi ◽  
Alireza Arshsadi khamseh ◽  
Abolfazl Mirzazadeh

This paper studies the effect of inflation and customer returns on joint pricing and inventory control for deteriorating items. We adopt a price and time dependent demand function, also the customer returns are considered as a function of both price and demand. Shortage is allowed and partially backlogged. The main objective is determining the optimal selling price, the optimal replenishment cycles, and the order quantity simultaneously such that the present value of total profit in a finite time horizon is maximized. An algorithm has been presented to find the optimal solution. Finally, we solve a numerical example to illustrate the solution procedure and the algorithm.


2014 ◽  
Vol 28 (4) ◽  
pp. 529-563 ◽  
Author(s):  
Zhan Pang ◽  
Frank Y. Chen

This paper addresses a joint pricing and inventory control problem for a batch production system with random leadtimes. Assume that demand arrives according to a Poisson process with a price-dependent arrival rate. Each replenishment order contains a single batch of a fixed lot size. The replenishment leadtime follows an Erlang distribution, with the number of completed phases recording the delivery state of outstanding orders. The objective is to determine an optimal inventory-pricing policy that maximizes total expected discounted profit or long-run average profit. We first show that when there is at most one order outstanding at any point in time and that excess demand is lost, the optimal reorder policy can be characterized by a critical stock level and the optimal pricing decision is decreasing in the inventory level and delivery state. We then extend the analysis to mixed-Erlang leadtime distribution which can be used to approximate any random leadtime to any degree of accuracy. We further extend the analysis to allowing three outstanding orders where the optimal reorder point becomes state-dependent: the closer an outstanding order is to its arrival or the more orders are outstanding, the lower selling price is charged and the lower reorder point is chosen. Finally, we address the backlog case and show that the monotone pricing structure may not be true when the optimal reorder point is negative.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Rui Wang ◽  
Xianghua Gan ◽  
Qing Li ◽  
Xiao Yan

We study a joint pricing and inventory control problem for perishables with positive lead time in a finite horizon periodic-review system. Unlike most studies considering a continuous density function of demand, in our paper the customer demand depends on the price of current period and arrives according to a homogeneous Poisson process. We consider both backlogging and lost-sales cases, and our goal is to find a simultaneously ordering and pricing policy to maximize the expected discounted profit over the planning horizon. When there is no fixed ordering cost involved, we design a deep reinforcement learning algorithm to obtain a near-optimal ordering policy and show that there are some monotonicity properties in the learned policy. We also show that our deep reinforcement learning algorithm achieves a better performance than tabular-based Q-learning algorithms. When a fixed ordering cost is involved, we show that our deep reinforcement learning algorithm is effective and efficient, under which the problem of “curse of dimension” is circumvented.


Sign in / Sign up

Export Citation Format

Share Document