Involvement of non-selective Ca2+ channels in the contraction induced by alkalinization of rat anococcygeus muscle cells

2006 ◽  
Vol 553 (1-3) ◽  
pp. 288-296 ◽  
Author(s):  
Carolina A. Restini ◽  
Lusiane M. Bendhack
1988 ◽  
Vol 255 (4) ◽  
pp. C536-C542 ◽  
Author(s):  
J. S. Walker ◽  
I. R. Wendt ◽  
C. L. Gibbs

Heat production, unloaded shortening velocity (Vus), and load-bearing capacity (LBC) were studied in the isolated rat anococcygeus muscle during isometric contractions at 27 degrees C. The relation between the total suprabasal heat produced and the stress-time integral for isometric contractions of various durations was curvilinear, demonstrating a decreasing slope as contractile duration increased. The rate of heat production at 600 s was approximately 68% of the peak value of 6.55 mW/g that occurred at 10 s. At the same time, force rose from a mean of 92 mN/mm2 at 10 s to a value of 140 mN/mm2 at 600 s. This produced a nearly threefold increase in the economy of force maintenance. The decline in the rate of heat production was accompanied by a decline in Vus from 0.56 Lo/s at 10 s to 0.28 Lo/s at 600 s, where Lo is the length for optimal force development. This suggests the fall in the rate of heat production was caused, at least in part, by a slowing of cross-bridge kinetics. The ratio of LBC to developed tension at 10 s was not significantly different from the ratio at 600 s, suggesting that the increase in tension was due to an increased number of attached cross bridges. The decline in heat production, therefore, appears contradictory, since an increased number of attached cross bridges would predict an increased rate of energy expenditure. The observations can be reconciled if either 1) the increase in force is caused by a progressive increase in the attachment time of a constant number of cross bridges that cycle at a lower frequency or 2) the decline in energy expenditure caused by the slowing of cross-bridge cycling is sufficient to mask the increase caused by the recruitment of additional cross bridges.


1989 ◽  
Vol 257 (4) ◽  
pp. C607-C611 ◽  
Author(s):  
A. Wallnofer ◽  
C. Cauvin ◽  
T. W. Lategan ◽  
U. T. Ruegg

ATP stimulated 45Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating 45Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce 45Ca2+ influx. Stimulation of 45Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced 45Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, and Mg2+) were able to inhibit both agonist- and depolarization-induced 45Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated 45Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.


Sign in / Sign up

Export Citation Format

Share Document