scholarly journals Aloperine inhibits hepatitis C virus entry into cells by disturbing internalisation from endocytosis to the membrane fusion process

2020 ◽  
Vol 883 ◽  
pp. 173323 ◽  
Author(s):  
Xiao-Qin Lv ◽  
Li-Li Zou ◽  
Jia-Li Tan ◽  
Hu Li ◽  
Jian-Rui Li ◽  
...  
2007 ◽  
Vol 81 (16) ◽  
pp. 8752-8765 ◽  
Author(s):  
Dimitri Lavillette ◽  
Eve-Isabelle Pécheur ◽  
Peggy Donot ◽  
Judith Fresquet ◽  
Jennifer Molle ◽  
...  

ABSTRACT Infection of eukaryotic cells by enveloped viruses requires the merging of viral and cellular membranes. Highly specific viral surface glycoproteins, named fusion proteins, catalyze this reaction by overcoming inherent energy barriers. Hepatitis C virus (HCV) is an enveloped virus that belongs to the genus Hepacivirus of the family Flaviviridae. Little is known about the molecular events that mediate cell entry and membrane fusion for HCV, although significant progress has been made due to recent developments in infection assays. Here, using infectious HCV pseudoparticles (HCVpp), we investigated the molecular basis of HCV membrane fusion. By searching for classical features of fusion peptides through the alignment of sequences from various HCV genotypes, we identified six regions of HCV E1 and E2 glycoproteins that present such characteristics. We introduced conserved and nonconserved amino acid substitutions in these regions and analyzed the phenotype of HCVpp generated with mutant E1E2 glycoproteins. This was achieved by (i) quantifying the infectivity of the pseudoparticles, (ii) studying the incorporation of E1E2 and their capacity to mediate receptor binding, and (iii) determining their fusion capacity in cell-cell and liposome/HCVpp fusion assays. We propose that at least three of these regions (i.e., at positions 270 to 284, 416 to 430, and 600 to 620) play a role in the membrane fusion process. These regions may contribute to the merging of viral and cellular membranes either by interacting directly with lipid membranes or by assisting the fusion process through their involvement in the conformational changes of the E1E2 complex at low pH.


2012 ◽  
Vol 443 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Irene Boo ◽  
Kevin teWierik ◽  
Florian Douam ◽  
Dimitri Lavillette ◽  
Pantelis Poumbourios ◽  
...  

The protonation of histidine in acidic environments underpins its role in regulating the function of pH-sensitive proteins. For pH-sensitive viral fusion proteins, histidine protonation in the endosome leads to the activation of their membrane fusion function. The HCV (hepatitis C virus) glycoprotein E1–E2 heterodimer mediates membrane fusion within the endosome, but the roles of conserved histidine residues in the formation of a functional heterodimer and in sensing pH changes is unknown. We examined the functional roles of conserved histidine residues located within E1 and E2. The E1 mutations, H222A/R, H298R and H352A, disrupted E1–E2 heterodimerization and reduced virus entry. A total of five out of six histidine residues located within the E2 RBD (receptor-binding domain) were important for the E2 fold, and their substitution with arginine or alanine caused aberrant heterodimerization and/or CD81 binding. Distinct roles in E1–E2 heterodimerization and in virus entry were identified for His691 and His693 respectively within the membrane-proximal stem region. Viral entry and cell–cell fusion at neutral and low pH values were enhanced with H445R, indicating that the protonation state of His445 is a key regulator of HCV fusion. However, H445R did not overcome the block to virus entry induced by bafilomycin A1, indicating a requirement for an endosomal activation trigger in addition to acidic pH.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0154498 ◽  
Author(s):  
Aarti Ramanathan ◽  
Viktoria Gusarova ◽  
Neil Stahl ◽  
Anne Gurnett-Bander ◽  
Christos A. Kyratsous

2017 ◽  
Vol 114 (23) ◽  
pp. E4527-E4529 ◽  
Author(s):  
Hirofumi Ohashi ◽  
Yoshiki Koizumi ◽  
Kento Fukano ◽  
Takaji Wakita ◽  
Alan S. Perelson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document