A new nitrosyl ruthenium complex nitric oxide donor presents higher efficacy than sodium nitroprusside on relaxation of airway smooth muscle

2011 ◽  
Vol 43 (5) ◽  
pp. 370-377 ◽  
Author(s):  
Patrícia F.S. Castro ◽  
Amanda de C. Pereira ◽  
Gerson J. Rogrigues ◽  
Aline C. Batista ◽  
Roberto S. da Silva ◽  
...  
2016 ◽  
Vol 43 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Patrícia Ferreira da Silva Castro ◽  
Daniela Lobo de Andrade ◽  
Carolina de Fátima Reis ◽  
Sérgio Henrique Nascente Costa ◽  
Aline Carvalho Batista ◽  
...  

2000 ◽  
Vol 92 (3) ◽  
pp. 813-820 ◽  
Author(s):  
Hiroyuki Kinoshita ◽  
Toshizo Ishikawa ◽  
Yoshio Hatano

Background A class Ib antiarrhythmic drug, mexiletine, augments relaxations produced by adenosine triphosphate (ATP) sensitive K+ channel openers in isolated rat aortas, suggesting that it produces changes in the vasodilation mediated by ATP-sensitive K+ channels. Nitric oxide can induce its vasodilator effect via K+ channels, including ATP-sensitive K+ channels, in smooth muscle cells. Effects of mexiletine on arterial relaxations to nitric oxide donors, have not been studied. Therefore, the current study in isolated rat aortas was designed to (1) evaluate whether mexiletine augments relaxation in response to nitric oxide donors, including sodium nitroprusside, and (2) determine the role of K+ channels in mediating effects of mexiletine on such nitric oxide-mediated relaxation. Methods Rings of rat aortas without endothelia were suspended for isometric force recording. Concentration-response curves of sodium nitroprusside (10(-10) to 10(-5) M) and 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7; 10(-9) to 10(-5) M) were obtained in the absence and in the presence of mexiletine, in combination with a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo [4,3,-a]quinoxaline-1-one (ODQ), or inhibitors for ATP-sensitive K+ channels (glibenclamide), inward rectifier K+ channels (BaCl2), delayed rectifier K+ channels (4-aminopyridine), large conductance Ca2+-dependent K+ channels (iberiotoxin), or small conductance Ca2+-dependent K+ channels (apamin). Results Mexiletine (10(-5) or 3 x 10(-5) M) augmented relaxations to sodium nitroprusside and NOC-7. In arteries treated with glibenclamide (10(-5) M), mexiletine (3 x 10(-5) M) did not affect relaxations to nitric oxide donors, whereas mexiletine augmented relaxations to sodium nitroprusside despite the presence of BaCl2 (10(-5) M), 4-aminopyridine (10(-3) M), iberiotoxin (5 x 10(-8) M) and apamin (5 x 10(-8) M). Relaxations to sodium nitroprusside were abolished by ODQ (5 x 10(-6) M), whereas these relaxations were augmented by mexiletine (3 x 10(-5) M) in arteries treated with ODQ (5 x 10(-6) M). Conclusions These results suggest that ATP-sensitive K+ channels in vascular smooth muscle, contribute to the augmented vasodilator effect of a nitric oxide donor, sodium nitroprusside induced by mexiletine, and that the vasodilator effect is produced, at least in part, via the guanylate cyclase-independent mechanism.


1994 ◽  
Vol 77 (3) ◽  
pp. 1142-1147 ◽  
Author(s):  
K. Stuart-Smith ◽  
T. C. Bynoe ◽  
K. S. Lindeman ◽  
C. A. Hirshman

Nitrovasodilators and nitric oxide relax airway smooth muscle. The mechanism by which nitrovasodilators are thought to act is by release of nitric oxide, but the importance of nitric oxide in nitrovasodilator-induced airway smooth muscle relaxation is unclear. The aim of this study was to compare the relaxing effects of nitric oxide itself with those of nitrovasodilators in porcine tracheal muscle and intrapulmonary airways and to investigate the mechanisms involved. Strips of porcine tracheal smooth muscle, rings of bronchi, and strips of bronchi from the same animal were suspended in organ chambers in modified Krebs Ringer solution (95% O2–5% CO2, 37 degrees C). Tissues were contracted with carbachol, and concentration-response curves to nitric oxide, sodium nitroprusside, and SIN-1 (an active metabolite of molsidomine) were obtained. All tissues relaxed to sodium nitroprusside, SIN-1, and nitric oxide. The relaxation to nitric oxide but not to SIN-1 or sodium nitroprusside was inhibited by methylene blue. Tissues pretreated with methylene blue that failed to relax to nitric oxide were, however, relaxed by sodium nitroprusside. These results demonstrate that nitrovasodilators relax airways by a mechanism other than by or in addition to the release of nitric oxide.


2006 ◽  
Vol 290 (2) ◽  
pp. L278-L283 ◽  
Author(s):  
Binnaz Ay ◽  
Adeyemi Iyanoye ◽  
Gary C. Sieck ◽  
Y. S. Prakash ◽  
Christina M. Pabelick

Sarcoplasmic reticulum (SR) Ca2+ release and plasma membrane Ca2+ influx are key to intracellular Ca2+ ([Ca2+]i) regulation in airway smooth muscle (ASM). SR Ca2+ depletion triggers influx via store-operated Ca2+ channels (SOCC) for SR replenishment. Several clinically relevant bronchodilators mediate their effect via cyclic nucleotides (cAMP, cGMP). We examined the effect of cyclic nucleotides on SOCC-mediated Ca2+ influx in enzymatically dissociated porcine ASM cells. SR Ca2+ was depleted by 1 μM cyclopiazonic acid in 0 extracellular Ca2+ ([Ca2+]o), nifedipine, and KCl (preventing Ca2+ influx through L-type and SOCC channels). SOCC was then activated by reintroduction of [Ca2+]o and characterized by several techniques. We examined cAMP effects on SOCC by activating SOCC in the presence of 1 μM isoproterenol or 100 μM dibutryl cAMP (cell-permeant cAMP analog), whereas we examined cGMP effects using 1 μM (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO nitric oxide donor) or 100 μM 8-bromoguanosine 3',5'-cyclic monophosphate (cell-permeant cGMP analog). The role of protein kinases A and G was examined by preexposure to 100 nM KT-5720 and 500 nM KT-5823, respectively. SOCC-mediated Ca2+ influx was dependent on the extent of SR Ca2+ depletion, sensitive to Ni2+ and La3+, but not inhibitors of voltage-gated influx channels. cAMP as well as cGMP potently inhibited Ca2+ influx, predominantly via their respective protein kinases. Additionally, cAMP cross-activation of protein kinase G contributed to SOCC inhibition. These data demonstrate that a Ni2+/La3+-sensitive Ca2+ influx in ASM triggered by SR Ca2+ depletion is inhibited by cAMP and cGMP via a protein kinase mechanism. Such inhibition may play a role in the bronchodilatory response of ASM to clinically relevant drugs (e.g., β-agonists vs. nitric oxide).


Circulation ◽  
1997 ◽  
Vol 95 (9) ◽  
pp. 2303-2311 ◽  
Author(s):  
Nobuhiko Ito ◽  
Josef Bartunek ◽  
Kenneth W. Spitzer ◽  
Beverly H. Lorell

Nitric Oxide ◽  
2009 ◽  
Vol 21 (2) ◽  
pp. 126-131 ◽  
Author(s):  
Darren C. Henstridge ◽  
Brian G. Drew ◽  
Melissa F. Formosa ◽  
Alaina K. Natoli ◽  
David Cameron-Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document