scholarly journals Carrier particle emission and dispersion in transient CFD-DEM simulations of a capsule-based DPI

Author(s):  
Benedict Benque ◽  
Johannes G. Khinast
1986 ◽  
Vol 47 (C4) ◽  
pp. C4-289-C4-303
Author(s):  
R. LACEY ◽  
N. N. AJITANAND ◽  
J. M. ALEXANDER ◽  
D.M. DE CASTRO RIZZO ◽  
G. F. PEASLEE ◽  
...  

Author(s):  
Jordan Musser ◽  
Ann S Almgren ◽  
William D Fullmer ◽  
Oscar Antepara ◽  
John B Bell ◽  
...  

MFIX-Exa is a computational fluid dynamics–discrete element model (CFD-DEM) code designed to run efficiently on current and next-generation supercomputing architectures. MFIX-Exa combines the CFD-DEM expertise embodied in the MFIX code—which was developed at NETL and is used widely in academia and industry—with the modern software framework, AMReX, developed at LBNL. The fundamental physics models follow those of the original MFIX, but the combination of new algorithmic approaches and a new software infrastructure will enable MFIX-Exa to leverage future exascale machines to optimize the modeling and design of multiphase chemical reactors.


2021 ◽  
Vol 1051 (1) ◽  
pp. 012069
Author(s):  
N Hasyimah ◽  
M Rashid ◽  
C M Hasrizam ◽  
H Norelyza ◽  
S Hajar

2001 ◽  
Vol 32 ◽  
pp. 171-172
Author(s):  
G. MORDAS ◽  
V. ULEVICIUS

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4008
Author(s):  
Błażej Doroszuk ◽  
Robert Król ◽  
Jarosław Wajs

This paper addresses the problem of conveyor transfer station design in harsh operating conditions, aiming to identify and eliminate a failure phenomenon which interrupts aggregate supply. The analyzed transfer station is located in a Polish granite quarry. The study employs laser scanning and reverse engineering methods to map the existing transfer station and its geometry. Next, a discrete element method (DEM) model of granite aggregate has been created and used for simulating current operating conditions. The arch formation has been identified as the main reason for breakdowns. Alternative design solutions for transfer stations were tested in DEM simulations. The most uncomplicated design for manufacturing incorporated an impact plate, and a straight chute has been selected as the best solution. The study also involved identifying areas of the new station most exposed to wear phenomena. A new transfer point was implemented in the quarry and resolved the problem of blockages.


2021 ◽  
Author(s):  
A. Grabowski ◽  
M. Nitka ◽  
J. Tejchman

AbstractThree-dimensional simulations of a monotonic quasi-static interface behaviour between initially dense cohesionless sand and a rigid wall of different roughness during tests in a parallelly guided direct shear test under constant normal stress are presented. Numerical modelling was carried out by the discrete element method (DEM) using clumps in the form of convex non-symmetric irregularly shaped grains. The clumps had an aspect ratio of 1.5. A regular grid of triangular grooves (asperities) along the wall with a different height at the same distance was assumed. The numerical results with clumps were directly compared under the same conditions with our earlier DEM simulations using pure spheres with contact moments with respect to the peak and residual interface friction angle, width of the interface shear zone, ratio between grain slips and grain rotations, distribution of contact forces and stresses. The difference between the behaviour of clumps and pure spheres with contact moments proved to be noticeable in the post-peak regime due to a different particle shape. The rolling resistance model with pure spheres was proved to be limited for capturing particle shape effects. Three different boundary conditions along the interface were proposed for micropolar continua, considering grain rotations and grain slips, wall grain moments and wall grain forces, and normalized interface roughness. The numerical results in this paper offer a better understanding of the interface behaviour of granular bodies in DEM and FEM simulations.


1980 ◽  
Vol 45 (17) ◽  
pp. 1389-1392 ◽  
Author(s):  
G. R. Young ◽  
R. L. Ferguson ◽  
A. Gavron ◽  
D. C. Hensley ◽  
Felix E. Obenshain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document