surface expansion
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
H. Adami ◽  
D. Grumiller ◽  
M. M. Sheikh-Jabbari ◽  
V. Taghiloo ◽  
H. Yavartanoo ◽  
...  

Abstract We construct the boundary phase space in D-dimensional Einstein gravity with a generic given co-dimension one null surface $$ \mathcal{N} $$ N as the boundary. The associated boundary symmetry algebra is a semi-direct sum of diffeomorphisms of $$ \mathcal{N} $$ N and Weyl rescalings. It is generated by D towers of surface charges that are generic functions over $$ \mathcal{N} $$ N . These surface charges can be rendered integrable for appropriate slicings of the phase space, provided there is no graviton flux through $$ \mathcal{N} $$ N . In one particular slicing of this type, the charge algebra is the direct sum of the Heisenberg algebra and diffeomorphisms of the transverse space, $$ \mathcal{N} $$ N v for any fixed value of the advanced time v. Finally, we introduce null surface expansion- and spin-memories, and discuss associated memory effects that encode the passage of gravitational waves through $$ \mathcal{N} $$ N , imprinted in a change of the surface charges.


2021 ◽  
Vol 13 (14) ◽  
pp. 7901
Author(s):  
Jifeng Du ◽  
Mengxiao Yu ◽  
Junhua Yan

Empirical evidence shows that the expansion of impervious surface threatens soil organic carbon (SOC) sequestration in urbanized areas. However, the understanding of deep soil excavation due to the vertical expansion of impervious surface remains limited. According to the average soil excavation depth, we divided impervious surface into pavement (IS20), low-rise building (IS100) and high-rise building (IS300). Based on remote-sensing images and published SOC density data, we estimated the SOC storage and its response to the impervious surface expansion in the 0–300 cm soil depth in Guangzhou city, China. The results showed that the total SOC storage of the study area was 8.31 Tg, of which the top 100 cm layer contributed 44%. The impervious surface expansion to date (539.87 km2) resulted in 4.16 Tg SOC loss, of which the IS20, IS100 and IS300 contributed 26%, 58% and 16%, respectively. The excavation-induced SOC loss (kg/m2) of IS300 was 1.8 times that of IS100. However, at the residential scale, renovating an IS100 plot into an IS300 plot can substantially reduce SOC loss compared with farmland urbanization. The gains of organic carbon accumulation in more greenspace coverage may be offset by the loss in deep soil excavation for the construction of underground parking lots, suggesting a need to control the exploitation intensity of underground space and promote residential greening.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Wrick Sengupta ◽  
Elizabeth J. Paul ◽  
Harold Weitzner ◽  
Amitava Bhattacharjee

While several results have pointed to the existence of exactly quasisymmetric fields on a surface (Garren & Boozer, Phys. Fluids B, vol. 3, 1991, pp. 2805–2821; 2822–2834; Plunk & Helander, J. Plasma Phys., vol. 84, 2018, 905840205), we have obtained the first such solutions using a vacuum surface expansion formalism. We obtain a single nonlinear parabolic partial differential equation for a function $\eta$ such the field strength satisfies $B = B(\eta )$ . Closed-form solutions are obtained in cylindrical, slab and isodynamic geometries. Numerical solutions of the full nonlinear equations in general axisymmetric toroidal geometry are obtained, resulting in a class of quasihelical local vacuum equilibria near an axisymmetric surface. The analytic models provide additional insight into general features of the nonlinear solutions, such as localization of the surface perturbations on the inboard side. The local solutions thus obtained can be continued globally only for special initial surfaces.


2021 ◽  
Vol 13 (5) ◽  
pp. 2944
Author(s):  
Liang Guo ◽  
Xiaohuan Xi ◽  
Weijun Yang ◽  
Lei Liang

Land use/cover change (LUCC) has a crucial influence on ecosystem function, environmental change and decision support. Rapid and precise monitoring of land use/cover change information is essential for utilization and management of land resources. The objectives of this study were to monitor land use/cover change of Guangzhou of China from 1986 to 2018 using remotely sensed data, and analyze the correlation between artificial surface expansion and the gross domestic product (GDP) growth. Supervised classification was performed using Random Forest classifier, and the overall accuracy (OA) ranged from 86.42% to 96.58% and kappa coefficient (K) ranged from 0.8079 to 0.9499. The results show that the built-up area of Guangzhou of China from 1986 to 2018 continued to increase. However, the vegetation area continued to decrease during 32 years. The built-up area increased by 1315.56 km2 (increased by 439.34%) with an average growth of 41.11 km2/year. The vegetation area reduced by 1290.78 km2 (reduced by 19.99%) with an average reduction of 40.34 km2/year. Research has shown that the reduced vegetation area was mainly converted into built-up area. The area of water bodies and bare lands was relatively stable and had a little change. The results indicate that the GDP had a strong positive correlation with built-up area (R2 = 0.98). However, there is a strong negative correlation between the GDP and vegetation area (R2 = 0.97) in Guangzhou City, China. As a consequence, the increase of built-up area was at the cost of the reduction of vegetation area.


2021 ◽  
Vol 33 (5) ◽  
pp. 1574-1583
Author(s):  
Sun Yanwei ◽  
◽  
Xu Youpeng ◽  
Gao Bin ◽  
Wang Qiang ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 177
Author(s):  
Alberto Di Renzo ◽  
Giacomo Rito ◽  
Francesco P. Di Maio

Multi-component liquid-fluidized beds are encountered in a variety of industrial processes. Often, segregation severely affects the performance of the process unit. Unfortunately, size-driven and density-driven separation processes may occur with a complex interplay, showing prevailing mechanisms that change with the operating conditions. For example, when the solids exhibit contrasting differences in size and density, even the direction of segregation can turn out hard to predict, giving rise for some systems to the so-called “layer inversion phenomenon”. A systematic experimental investigation is presented on 14 different binary beds composed of glass beads and ABS spheres with different size and density ratios and different bed composition. The analysis allows assessing the reliability of a model for predicting the segregation direction of fluidized binary beds (the Particle Segregation Model, PSM). By measurements of the solids’ concentration at the surface, expansion/segregation properties and the inversion voidage are compared with the PSM predictions, offering a direct means of model validation. Both the segregation direction throughout the expansion range and the value of the inversion voidage are compared. Extensive qualitative agreement is obtained for 12 out of 14 fluidized mixtures. Quantitatively, the average discrepancy between predicted and measured inversion voidage is below 5%, with a maximum of 17%.


Sign in / Sign up

Export Citation Format

Share Document