Osteoradionecrosis of the upper cervical spine: MR imaging following radiotherapy for nasopharyngeal carcinoma

2010 ◽  
Vol 73 (3) ◽  
pp. 629-635 ◽  
Author(s):  
Ann D. King ◽  
James F. Griffith ◽  
Jill M. Abrigo ◽  
Sing-fai Leung ◽  
Fung-kwai Yau ◽  
...  
1994 ◽  
Vol 81 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Edward C. Benzel ◽  
Blaine L. Hart ◽  
Perry A. Ball ◽  
Nevan G. Baldwin ◽  
William W. Orrison ◽  
...  

✓ Vertical C-2 body fractures are presented in 15 patients with clinical and imaging correlations that suggest the existence of a variety of mechanisms of injury. In these patients, clinical and imaging correlations were derived by: 1) defining the point of impact by clinical examination; 2) defining the point of impact by soft-tissue changes on cranial magnetic resonance (MR) imaging or computerized tomography (CT); 3) obtaining an accurate history of the mechanism of injury; and 4) spine imaging (x-ray studies, CT, and MR imaging) of the C-2 body fracture and surrounding bone and soft tissue. The cases presented involve the region located between the dens and the pars interarticularis of the axis. Although these fractures are rarely reported, they are not uncommon. An elucidation of their pathological anatomy helps to further the understanding of the mechanistic etiology of upper cervical spine trauma. A spectrum of mechanisms of injury causing upper cervical spine fractures was observed. The type of injury incurred is determined predominantly by the force vector applied during impact and the intrinsic strength and anatomy of C-2 and its surrounding spinal elements. From this clinical experience, two types of vertical C-2 body fractures are defined and presented: coronally oriented (Type 1) and sagittally oriented (Type 2). A third type of C-2 body fracture, the horizontal rostral C-2 fracture (Type 3), is added for completeness; this Type 3 fracture is the previously described Type III odontoid process fracture described by Anderson and D'Alonzo.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Harminder Singh ◽  
Bartosz Grobelny ◽  
Adam Flanders ◽  
Marc Rosen ◽  
Paul Schiffmacher ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Marko Jug

<b><i>Introduction:</i></b> In the case of tumor resection in the upper cervical spine, a multilevel laminectomy with instrumented fixation is required to prevent kyphotic deformity and myelopathy. Nevertheless, instrumentation of the cervical spine in children under the age of 8 years is challenging due to anatomical considerations and unavailability of specific instrumentation. <b><i>Case Presentation:</i></b> We present a case of 3D-printed model-assisted cervical spine instrumentation in a 4-year-old child with post-laminectomy kyphotic decompensation of the cervical spine and spinal cord injury 1 year after medulloblastoma metastasis resection in the upper cervical spine. Due to unavailability of specific instrumentation, 3D virtual planning was used to assess and plan posterior cervical fixation. Fixation with 3.5 mm lateral mass and isthmic screws was suggested and the feasibility of fixation was confirmed “in vitro” in a 3D-printed model preoperatively to reduce the possibility of intraoperative implant-spine mismatch. Intraoperative conditions completely resembled the preoperative plan and 3.5 mm polyaxial screws were successfully used as planned. Postoperatively the child made a complete neurological recovery and 2 years after the instrumented fusion is still disease free with no signs of spinal decompensation. <b><i>Discussion/Conclusion:</i></b> Our case shows that posterior cervical fixation with the conventional screw-rod technique in a 4-year-old child is feasible, but we suggest that suitability and positioning of the chosen implants are preoperatively assessed in a printed 3D model. In addition, a printed 3D model offers the possibility to better visualize and sense spinal anatomy “in vivo,” thereby helping screw placement and reducing the chance for intraoperative complications, especially in the absence of intraoperative spinal navigation.


1981 ◽  
Vol 30 (1) ◽  
pp. 41-47
Author(s):  
M. Yamanaka ◽  
G. Awaya ◽  
S. Takata ◽  
N. Nishijima ◽  
S. Shimamura

2015 ◽  
Vol 101 (4) ◽  
pp. 519-522 ◽  
Author(s):  
G. Mirouse ◽  
A. Journe ◽  
L. Casabianca ◽  
P.E. Moreau ◽  
S. Pannier ◽  
...  

2013 ◽  
Vol 53 (9) ◽  
pp. 620-624 ◽  
Author(s):  
Alessandro DI RIENZO ◽  
Maurizio IACOANGELI ◽  
Lorenzo ALVARO ◽  
Roberto COLASANTI ◽  
Elisa MORICONI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document