Automatic detection of brain metastases on contrast-enhanced CT with deep-learning feature-fused single-shot detectors

2021 ◽  
Vol 136 ◽  
pp. 109577
Author(s):  
Shiori Amemiya ◽  
Hidemasa Takao ◽  
Shimpei Kato ◽  
Hiroshi Yamashita ◽  
Naoya Sakamoto ◽  
...  
Author(s):  
Yunchao Yin ◽  
Derya Yakar ◽  
Rudi A. J. O. Dierckx ◽  
Kim B. Mouridsen ◽  
Thomas C. Kwee ◽  
...  

Abstract Objectives Deep learning has been proven to be able to stage liver fibrosis based on contrast-enhanced CT images. However, until now, the algorithm is used as a black box and lacks transparency. This study aimed to provide a visual-based explanation of the diagnostic decisions made by deep learning. Methods The liver fibrosis staging network (LFS network) was developed at contrast-enhanced CT images in the portal venous phase in 252 patients with histologically proven liver fibrosis stage. To give a visual explanation of the diagnostic decisions made by the LFS network, Gradient-weighted Class Activation Mapping (Grad-cam) was used to produce location maps indicating where the LFS network focuses on when predicting liver fibrosis stage. Results The LFS network had areas under the receiver operating characteristic curve of 0.92, 0.89, and 0.88 for staging significant fibrosis (F2–F4), advanced fibrosis (F3–F4), and cirrhosis (F4), respectively, on the test set. The location maps indicated that the LFS network had more focus on the liver surface in patients without liver fibrosis (F0), while it focused more on the parenchyma of the liver and spleen in case of cirrhosis (F4). Conclusions Deep learning methods are able to exploit CT-based information from the liver surface, liver parenchyma, and extrahepatic information to predict liver fibrosis stage. Therefore, we suggest using the entire upper abdomen on CT images when developing deep learning–based liver fibrosis staging algorithms. Key Points • Deep learning algorithms can stage liver fibrosis using contrast-enhanced CT images, but the algorithm is still used as a black box and lacks transparency. • Location maps produced by Gradient-weighted Class Activation Mapping can indicate the focus of the liver fibrosis staging network. • Deep learning methods use CT-based information from the liver surface, liver parenchyma, and extrahepatic information to predict liver fibrosis stage.


2020 ◽  
Vol 214 (3) ◽  
pp. 605-612 ◽  
Author(s):  
Takashi Tanaka ◽  
Yong Huang ◽  
Yohei Marukawa ◽  
Yuka Tsuboi ◽  
Yoshihisa Masaoka ◽  
...  

1995 ◽  
Vol 36 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Per Åkeson ◽  
E.-M. Larsson ◽  
D. T. Kristoffersen ◽  
E. Jonsson ◽  
S. Holtås

Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1113
Author(s):  
Djeane Debora Onthoni ◽  
Ting-Wen Sheng ◽  
Prasan Kumar Sahoo ◽  
Li-Jen Wang ◽  
Pushpanjali Gupta

Total Kidney Volume (TKV) is essential for analyzing the progressive loss of renal function in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Conventionally, to measure TKV from medical images, a radiologist needs to localize and segment the kidneys by defining and delineating the kidney’s boundary slice by slice. However, kidney localization is a time-consuming and challenging task considering the unstructured medical images from big data such as Contrast-enhanced Computed Tomography (CCT). This study aimed to design an automatic localization model of ADPKD using Artificial Intelligence. A robust detection model using CCT images, image preprocessing, and Single Shot Detector (SSD) Inception V2 Deep Learning (DL) model is designed here. The model is trained and evaluated with 110 CCT images that comprise 10,078 slices. The experimental results showed that our derived detection model outperformed other DL detectors in terms of Average Precision (AP) and mean Average Precision (mAP). We achieved mAP = 94% for image-wise testing and mAP = 82% for subject-wise testing, when threshold on Intersection over Union (IoU) = 0.5. This study proves that our derived automatic detection model can assist radiologist in locating and classifying the ADPKD kidneys precisely and rapidly in order to improve the segmentation task and TKV calculation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Se Woo Kim ◽  
Jung Hoon Kim ◽  
Suha Kwak ◽  
Minkyo Seo ◽  
Changhyun Ryoo ◽  
...  

AbstractOur objective was to investigate the feasibility of deep learning-based synthetic contrast-enhanced CT (DL-SCE-CT) from nonenhanced CT (NECT) in patients who visited the emergency department (ED) with acute abdominal pain (AAP). We trained an algorithm generating DL-SCE-CT using NECT with paired precontrast/postcontrast images. For clinical application, 353 patients from three institutions who visited the ED with AAP were included. Six reviewers (experienced radiologists, ER1-3; training radiologists, TR1-3) made diagnostic and disposition decisions using NECT alone and then with NECT and DL-SCE-CT together. The radiologists’ confidence in decisions was graded using a 5-point scale. The diagnostic accuracy using DL-SCE-CT improved in three radiologists (50%, P = 0.023, 0.012, < 0.001, especially in 2/3 of TRs). The confidence of diagnosis and disposition improved significantly in five radiologists (83.3%, P < 0.001). Particularly, in subgroups with underlying malignancy and miscellaneous medical conditions (MMCs) and in CT-negative cases, more radiologists reported increased confidence in diagnosis (83.3% [5/6], 100.0% [6/6], and 83.3% [5/6], respectively) and disposition (66.7% [4/6], 83.3% [5/6] and 100% [6/6], respectively). In conclusion, DL-SCE-CT enhances the accuracy and confidence of diagnosis and disposition regarding patients with AAP in the ED, especially for less experienced radiologists, in CT-negative cases, and in certain disease subgroups with underlying malignancy and MMCs.


Sign in / Sign up

Export Citation Format

Share Document