Potential of spiral breast computed tomography to increase patient comfort compared to DM

2021 ◽  
pp. 110038
Author(s):  
Matthias Wetzl ◽  
Evelyn Wenkel ◽  
Matthias Dietzel ◽  
Lisa Siegler ◽  
Julius Emons ◽  
...  
2012 ◽  
Vol 2 ◽  
pp. 7 ◽  
Author(s):  
Avice M. O’Connell ◽  
Daniel Kawakyu-O’Connor

Objective: This pilot study was undertaken to compare radiation dose, relative visibility/conspicuity of biopsy-proven lesions, and relative patient comfort in diagnostic mammography and dedicated cone-beam breast computed tomography (CBBCT) in Breast Imaging-Reporting and Data System (BI-RADS)® 4 or 5 lesions. Materials and Methods: Thirty-six consecutive patients (37 breasts) with abnormal mammographic and/or ultrasound categorized as BI-RADS® 4 or 5 lesions were evaluated with CBBCT prior to biopsy. Administered radiation dose was calculated for each modality. Mammograms and CBBCT images were compared side-by-side and lesion visibility/conspicuity was qualitatively scored. Histopathology of lesions was reviewed. Patients were administered a survey for qualitative evaluation of comfort between the two modalities. Results: CBBCT dose was similar to or less than diagnostic mammography, with a mean dose of 9.4 mGy (±3.1 SD) for CBBCT vs. 16.9 mGy (±6.9 SD) for diagnostic mammography in a total of 37 imaged breasts (P<0.001). Thirty-three of 34 mammographic lesions were scored as equally or better visualized in CBBCT relative to diagnostic mammography. Characterization of high-risk lesions was excellent. Patients reported greater comfort in CBBCT imaging relative to mammography. Conclusion: Our experience of side-by-side comparison of CBBCT and diagnostic mammography in BI-RADS® 4 and 5 breast lesions demonstrated a high degree of correlation between the two modalities across a variety of lesion types. Owing to favorable radiation dose profile, excellent visualization of lesions, and qualitative benefits including improved patient comfort, excellent field-of-view, and more anatomical evaluation of lesion margins, CBBCT offers a promising modality for diagnostic evaluation of breast lesions.


2008 ◽  
Vol 35 (5) ◽  
pp. 1950-1958 ◽  
Author(s):  
Jessie Q. Xia ◽  
Joseph Y. Lo ◽  
Kai Yang ◽  
Carey E. Floyd ◽  
John M. Boone

2011 ◽  
Vol 38 (2) ◽  
pp. 646-655 ◽  
Author(s):  
Nicolas D. Prionas ◽  
Shih-Ying Huang ◽  
John M. Boone

Author(s):  
Luigi Rigon ◽  
Federica Tapete ◽  
Diego Dreossi ◽  
Fulvia Arfelli ◽  
Anna Bergamaschi ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 848
Author(s):  
Matthias Wetzl ◽  
Evelyn Wenkel ◽  
Eva Balbach ◽  
Ebba Dethlefsen ◽  
Arndt Hartmann ◽  
...  

The primary objective of the study was to compare a spiral breast computed tomography system (SBCT) to digital breast tomosynthesis (DBT) for the detection of microcalcifications (MCs) in breast specimens. The secondary objective was to compare various reconstruction modes in SBCT. In total, 54 breast biopsy specimens were examined with mammography as a standard reference, with DBT, and with a dedicated SBCT containing a photon-counting detector. Three different reconstruction modes were applied for SBCT datasets (Recon1 = voxel size (0.15 mm)3, smooth kernel; Recon2 = voxel size (0.05 mm)3, smooth kernel; Recon3 = voxel size (0.05 mm)3, sharp kernel). Sensitivity and specificity of DBT and SBCT for the detection of suspicious MCs were analyzed, and the McNemar test was used for comparisons. Diagnostic confidence of the two readers (Likert Scale 1 = not confident; 5 = completely confident) was analyzed with ANOVA. Regarding detection of MCs, reader 1 had a higher sensitivity for DBT (94.3%) and Recon2 (94.9%) compared to Recon1 (88.5%; p < 0.05), while sensitivity for Recon3 was 92.4%. Respectively, reader 2 had a higher sensitivity for DBT (93.0%), Recon2 (92.4%), and Recon3 (93.0%) compared to Recon1 (86.0%; p < 0.05). Specificities ranged from 84.7–94.9% for both readers (p > 0.05). The diagnostic confidence of reader 1 was better with SBCT than with DBT (DBT 4.48 ± 0.88, Recon1 4.77 ± 0.66, Recon2 4.89 ± 0.44, and Recon3 4.75 ± 0.72; DBT vs. Recon1/2/3: p < 0.05), while reader 2 found no differences. Sensitivity and specificity for the detection of MCs in breast specimens is equal for DBT and SBCT when a small voxel size of (0.05 mm)3 is used with an equal or better diagnostic confidence for SBCT compared to DBT.


2015 ◽  
Vol 50 (10) ◽  
pp. 726-732 ◽  
Author(s):  
Brigitte Gückel ◽  
Sergios Gatidis ◽  
Paul Enck ◽  
Jürgen Schäfer ◽  
Sotirios Bisdas ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
pp. 70-79 ◽  
Author(s):  
A. Hutchinson ◽  
P. Bridge

AbstractPurposeTo establish whether the use of a passive or active technique of planning target volume (PTV) definition and treatment methods for non-small cell lung cancer (NSCLC) deliver the most effective results. This literature review assesses the advantages and disadvantages in recent studies of each, while assessing the validity of the two approaches for planning and treatment.MethodsA systematic review of literature focusing on the planning and treatment of radiation therapy to NSCLC tumours. Different approaches which have been published in recent articles are subjected to critical appraisal in order to determine their relative efficacy.ResultsFree-breathing (FB) is the optimal method to perform planning scans for patients and departments, as it involves no significant increase in cost, workload or education. Maximum intensity projection (MIP) is the fastest form of delineation, however it is noted to be less accurate than the ten-phase overlap approach for computed tomography (CT). Although gating has proven to reduce margins and facilitate sparing of organs at risk, treatment times can be longer and planning time can be as much as 15 times higher for intensity modulated radiation therapy (IMRT). This raises issues with patient comfort and stabilisation, impacting on the chance of geometric miss. Stereotactic treatments can take up to 3 hours to treat, along with increases in planning and treatment, as well as the additional hardware, software and training required.ConclusionFour-dimensional computed tomography (4DCT) is superior to 3DCT, with the passive FB approach for PTV delineation and treatment optimal. Departments should use a combination of MIP with visual confirmation ensuring coverage for stage 1 disease. Stages 2–3 should be delineated using ten-phases overlaid. Stereotactic and gated treatments for early stage disease should be used accordingly; FB-IMRT is optimal for latter stage disease.


Sign in / Sign up

Export Citation Format

Share Document