scholarly journals Dedicated breast computed tomography: Volume image denoising via a partial-diffusion equation based technique

2008 ◽  
Vol 35 (5) ◽  
pp. 1950-1958 ◽  
Author(s):  
Jessie Q. Xia ◽  
Joseph Y. Lo ◽  
Kai Yang ◽  
Carey E. Floyd ◽  
John M. Boone
2021 ◽  
Vol 17 (4) ◽  
pp. 1-16
Author(s):  
Xiaowe Xu ◽  
Jiawei Zhang ◽  
Jinglan Liu ◽  
Yukun Ding ◽  
Tianchen Wang ◽  
...  

As one of the most commonly ordered imaging tests, the computed tomography (CT) scan comes with inevitable radiation exposure that increases cancer risk to patients. However, CT image quality is directly related to radiation dose, and thus it is desirable to obtain high-quality CT images with as little dose as possible. CT image denoising tries to obtain high-dose-like high-quality CT images (domain Y ) from low dose low-quality CT images (domain X ), which can be treated as an image-to-image translation task where the goal is to learn the transform between a source domain X (noisy images) and a target domain Y (clean images). Recently, the cycle-consistent adversarial denoising network (CCADN) has achieved state-of-the-art results by enforcing cycle-consistent loss without the need of paired training data, since the paired data is hard to collect due to patients’ interests and cardiac motion. However, out of concerns on patients’ privacy and data security, protocols typically require clinics to perform medical image processing tasks including CT image denoising locally (i.e., edge denoising). Therefore, the network models need to achieve high performance under various computation resource constraints including memory and performance. Our detailed analysis of CCADN raises a number of interesting questions that point to potential ways to further improve its performance using the same or even fewer computation resources. For example, if the noise is large leading to a significant difference between domain X and domain Y , can we bridge X and Y with a intermediate domain Z such that both the denoising process between X and Z and that between Z and Y are easier to learn? As such intermediate domains lead to multiple cycles, how do we best enforce cycle- consistency? Driven by these questions, we propose a multi-cycle-consistent adversarial network (MCCAN) that builds intermediate domains and enforces both local and global cycle-consistency for edge denoising of CT images. The global cycle-consistency couples all generators together to model the whole denoising process, whereas the local cycle-consistency imposes effective supervision on the process between adjacent domains. Experiments show that both local and global cycle-consistency are important for the success of MCCAN, which outperforms CCADN in terms of denoising quality with slightly less computation resource consumption.


2011 ◽  
Vol 38 (2) ◽  
pp. 646-655 ◽  
Author(s):  
Nicolas D. Prionas ◽  
Shih-Ying Huang ◽  
John M. Boone

Author(s):  
Luigi Rigon ◽  
Federica Tapete ◽  
Diego Dreossi ◽  
Fulvia Arfelli ◽  
Anna Bergamaschi ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 848
Author(s):  
Matthias Wetzl ◽  
Evelyn Wenkel ◽  
Eva Balbach ◽  
Ebba Dethlefsen ◽  
Arndt Hartmann ◽  
...  

The primary objective of the study was to compare a spiral breast computed tomography system (SBCT) to digital breast tomosynthesis (DBT) for the detection of microcalcifications (MCs) in breast specimens. The secondary objective was to compare various reconstruction modes in SBCT. In total, 54 breast biopsy specimens were examined with mammography as a standard reference, with DBT, and with a dedicated SBCT containing a photon-counting detector. Three different reconstruction modes were applied for SBCT datasets (Recon1 = voxel size (0.15 mm)3, smooth kernel; Recon2 = voxel size (0.05 mm)3, smooth kernel; Recon3 = voxel size (0.05 mm)3, sharp kernel). Sensitivity and specificity of DBT and SBCT for the detection of suspicious MCs were analyzed, and the McNemar test was used for comparisons. Diagnostic confidence of the two readers (Likert Scale 1 = not confident; 5 = completely confident) was analyzed with ANOVA. Regarding detection of MCs, reader 1 had a higher sensitivity for DBT (94.3%) and Recon2 (94.9%) compared to Recon1 (88.5%; p < 0.05), while sensitivity for Recon3 was 92.4%. Respectively, reader 2 had a higher sensitivity for DBT (93.0%), Recon2 (92.4%), and Recon3 (93.0%) compared to Recon1 (86.0%; p < 0.05). Specificities ranged from 84.7–94.9% for both readers (p > 0.05). The diagnostic confidence of reader 1 was better with SBCT than with DBT (DBT 4.48 ± 0.88, Recon1 4.77 ± 0.66, Recon2 4.89 ± 0.44, and Recon3 4.75 ± 0.72; DBT vs. Recon1/2/3: p < 0.05), while reader 2 found no differences. Sensitivity and specificity for the detection of MCs in breast specimens is equal for DBT and SBCT when a small voxel size of (0.05 mm)3 is used with an equal or better diagnostic confidence for SBCT compared to DBT.


2011 ◽  
Vol 38 (2) ◽  
pp. 589-597 ◽  
Author(s):  
Ying Yi ◽  
Chao-Jen Lai ◽  
Tao Han ◽  
Yuncheng Zhong ◽  
Youtao Shen ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Caroline Zellweger ◽  
Nicole Berger ◽  
Jann Wieler ◽  
Dania Cioni ◽  
Emanuele Neri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document