scholarly journals Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data

2020 ◽  
Vol 23 (2) ◽  
pp. 207-219 ◽  
Author(s):  
N. Anusha ◽  
B. Bharathi
2020 ◽  
Vol 12 (14) ◽  
pp. 5784 ◽  
Author(s):  
Meimei Zhang ◽  
Fang Chen ◽  
Dong Liang ◽  
Bangsen Tian ◽  
Aqiang Yang

Floods are some of the most serious and devastating natural hazards on earth, bringing huge threats to lives, properties, and living environments. Rapid delineation of the spatial extent of flooding is of great importance for the dynamic monitoring of flood evolution and corresponding emergency strategies. Some of the current flood mapping methods mainly process single date images characterized by simple flood situations and homogenous backgrounds. Although other methods show good performance for images with harsh conditions for floods, they must be trained—many times based on pre-classified samples—or undergo complicated parameter tuning processes, which require computation efforts. The widely used change detection methods utilize multi-temporal Synthetic Aperture Radar (SAR) images for the detection of flood area, but the results are largely influenced by the quality of defined reference images. Furthermore, these methods were mostly applied for some river basin floods, which are not effective for the large scale, semi-arid regions with complex flood conditions, and various land cover types. All of these extremely limited the use of these methods for the timely and accurate extraction of the spatial distribution pattern of floods in other typical and broad areas. Based on the above considerations, this paper presents a new method for rapidly determining the extent of flooding in large, semi-arid areas with challenging environmental conditions, based on multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) data. First, a preprocessing scheme is applied to perform geometric correction and to estimate the intensity of the imagery. Second, an automatic thresholding procedure is used to generate an initial land and water classification through the integration of the probability density distribution. A fuzzy logic-based approach, combining SAR backscattering information and other auxiliary data, is then used to refine the initial classified image. The fuzzy logic-based refinement removes areas that look similar to water in the SAR images, significantly enhancing the flood mapping accuracy. Finally, a post-processing step consisting of morphological operations and extraction improves the homogeneity of the extracted flood segments, discards isolated pixels, and gives the final flood map. This method can automatically detect the extent of floods at little computational cost. As Sentinel-1 data are publicly available and have a fast repeat cycle, the procedure can provide near real time results for rapid emergency response following flash floods. The accuracy of the proposed method is assessed at three test sites in Pakistan, which covered diverse landscapes and suffered large scale serious flooding after a long and severe drought in 2015. In comparison with the more recent studies from Ohki et al., 2020, and Shahabi et al., 2020, our results indicate the best spatial agreement with GF-2 panchromatic multi-spectral (PMS) water classification, with an encouraging overall accuracy ranging from 91.1% to 96.6%, and Kappa coefficients ranging from 0.893 to 0.954. Especially for the areas with fragmented floods, heterogeneous backgrounds, and the areas where samples are highly unbalanced in the SAR images, our method combines the global statistics and local relationships of backscattering properties, terrain, and other auxiliary information, enabling to effectively preserve the detailed structures and also remove the noise.


Proceedings ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 13
Author(s):  
Sona Salehiyan Qamsary ◽  
Hossein Arefi ◽  
Reza Shah-Hosseini

Urban areas are rapidly changing all over the world and, therefore, continuous mapping of the changes is essential for urban planners and decision makers. Urban changes can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The urban scene is characterized by very high complexity, containing objects formed from different types of man-made materials as well as natural objects. The aim of this study is to detect urban growth which can be further utilized for urban planning. Although high-resolution optical data can be used to determine classes more precisely, it is still difficult to distinguish classes, such as residential regions with different building type, due to spectral similarities. Synthetic aperture radar (SAR) data provide valuable information about the type of scattering backscatter from an object in the scene as well as its geometry and its dielectric properties. Therefore, the information obtained using SAR processing is complementary to that obtained using optical data. This proposed algorithm has been applied on a multi-sensor dataset consisting of optical QuickBird images (RGB) and full polarimetric L-band UAVSAR (Unmanned Aerial Vehicle Synthetic Aperture Radar) image data. After preprocessing the data, the coherency matrix (T), and Pauli decomposition are extracted from multi-temporal UAVSAR images. Next, the SVM (support vector machine) classification method is applied to the multi-temporal features in order to generate two classified maps. In the next step, a post-classification-based algorithm is used to generate the change map. Finally, the results of the change maps are fused by the majority voting algorithm to improve the detection of urban changes. In order to clarify the importance of using both optical and polarimetric images, the majority voting algorithm was also separately applied to change maps of optical and polarimetric images. In order to analyze the accuracy of the change maps, the ground truth change and no-change area that were gathered by visual interpretation of Google earth images were used. After correcting for the noise generated by the post-classification method, the final change map was obtained with an overall accuracy of 89.81% and kappa of 0.8049.


2021 ◽  
Vol 13 (4) ◽  
pp. 604
Author(s):  
Donato Amitrano ◽  
Gerardo Di Martino ◽  
Raffaella Guida ◽  
Pasquale Iervolino ◽  
Antonio Iodice ◽  
...  

Microwave remote sensing has widely demonstrated its potential in the continuous monitoring of our rapidly changing planet. This review provides an overview of state-of-the-art methodologies for multi-temporal synthetic aperture radar change detection and its applications to biosphere and hydrosphere monitoring, with special focus on topics like forestry, water resources management in semi-arid environments and floods. The analyzed literature is categorized on the base of the approach adopted and the data exploited and discussed in light of the downstream remote sensing market. The purpose is to highlight the main issues and limitations preventing the diffusion of synthetic aperture radar data in both industrial and multidisciplinary research contexts and the possible solutions for boosting their usage among end-users.


Sign in / Sign up

Export Citation Format

Share Document