scholarly journals Development of an Endovascular Training Model for Simulation of Evar Procedures Using 3D Rapid Prototyping for the Production of Exchangeable Patient Specific Anatomic Models

2019 ◽  
Vol 58 (6) ◽  
pp. e290-e292
Author(s):  
Anna C. Hoefer ◽  
Juljan Bouchagiar ◽  
Jan P. Goltz ◽  
Marco Horn ◽  
Sarah Matthiensen ◽  
...  
Author(s):  
E. Nocerino ◽  
F. Remondino ◽  
F. Uccheddu ◽  
M. Gallo ◽  
G. Gerosa

In the last years, cardiovascular diagnosis, surgical planning and intervention have taken advantages from 3D modelling and rapid prototyping techniques. The starting data for the whole process is represented by medical imagery, in particular, but not exclusively, computed tomography (CT) or multi-slice CT (MCT) and magnetic resonance imaging (MRI). On the medical imagery, regions of interest, i.e. heart chambers, valves, aorta, coronary vessels, etc., are segmented and converted into 3D models, which can be finally converted in physical replicas through 3D printing procedure. In this work, an overview on modern approaches for automatic and semiautomatic segmentation of medical imagery for 3D surface model generation is provided. The issue of accuracy check of surface models is also addressed, together with the critical aspects of converting digital models into physical replicas through 3D printing techniques. A patient-specific 3D modelling and printing procedure (Figure 1), for surgical planning in case of complex heart diseases was developed. The procedure was applied to two case studies, for which MCT scans of the chest are available. In the article, a detailed description on the implemented patient-specific modelling procedure is provided, along with a general discussion on the potentiality and future developments of personalized 3D modelling and printing for surgical planning and surgeons practice.


2019 ◽  
Vol 25 (5) ◽  
pp. 888-894
Author(s):  
Behnam Gomari ◽  
Farzam Farahmand ◽  
Hassan Farkhondeh

Purpose An important challenge of the osteotomy procedures, particularly in the case of large and complex corrections, is the fixation of the osteotomy site. The purpose of this study is to propose a practical and cost-effect methodology for the plate adapting problem of osteotomy surgery. Design/methodology/approach A novel patient-specific plate contouring methodology, based on rapid prototyping (RP) and multi-point forming (MPF) techniques, was developed and evaluated. In this methodology, a female mold is fabricated by RP, based on the geometry of the osteotomy site and estimation of the plate spring back. The mold is then used to configure a MPF die, which is then used for press forming of the factory-made locking plate. The applicability of the methodology was assessed in two case studies. Findings The results of implementing the methodology on a femoral and a tibial locking plate indicated very good conformity with the underlying bone, in both the frontal and sagittal planes. The surgical application of the pre-operatively contoured tibial plate facilitated the plate locating and screw inserting procedures, and provided a secure fixation for bone fragments. Practical implications The results are promising and provide a proof of concept for the feasibility and applicability of the proposed methodology in clinical practice, as a complementary to the existing surgical preplanning and patient-specific instrument preparations. Originality/value The advantageous features of RP and the MPF were used to provide a solution for the plate adapting problem of osteotomy surgery.


2019 ◽  
Vol 12 (1) ◽  
pp. 94-97 ◽  
Author(s):  
Zongchao Yi ◽  
Bingwei He ◽  
Yuqing Liu ◽  
Shenyue Huang ◽  
Wenyao Hong

ObjectiveIn this article, a craniocerebral model is introduced for neurosurgical training, which is patient-specific, tactile-realistic, and with adjustable intracranial pressure.MethodsThe patient-specific feature is achieved by modeling from CT scans and magnetic resonance images (MRI). The brain tissue model is built by the hydrogel casting technique, while scalp, skull, vasculature, and lateral ventricles are all-in-one fabricated by three-dimensional (3D) printing. A closed-loop system is integrated to monitor and control the intracranial pressure. 3D measurements, mechanical tests, and simulated external ventricular drain (EVD) placement procedures are conducted on the model.ResultsA neurosurgical training model is completed with high accuracy (mean deviation 0.36 mm). The hydrogel brain tissue has a stiffness more similar to that of a real brain than the common 3D printed materials. The elasticity modulus of hydrogel brain tissue model is E=25.71 kPa, compared with our softest 3D printed material with E=1.14×103 kPa. Ten experienced surgeons rate the tactile realness of the neurosurgical training model at an average point of 4.25 on a scale from 1 (strongly negative) to 5 (strongly positive). The neurosurgical training model is also rated to be realistic in size (4.82), anatomy (4.70), and effective as an aid to improve blind EVD placement skills (4.65).ConclusionsThe neurosurgical training model can provide trainee surgeons with realistic experience in both tactile feedbacks and craniocerebral anatomy, improving their surgical skills.


2016 ◽  
Vol 100 ◽  
pp. 151-158
Author(s):  
Aurora de Acutis ◽  
Carmelo de Maria ◽  
Giovanni Vozzi

The majority of strategies used in tissue engineering (TE) employ a scaffold, which is used to guide .the proliferation, the migration and the adhesione of cell in 3D to pruduce an engineered tissue. A new trend in scaffolds’s fabrication is represented by the hybrid Rapid Prototyping technologies. This is a new multimaterial and multiscale fabrication approach which combine the common RP technologies with other micro/nanofabrication techiques to fabricate scaffold that mimick the hetereogenty and hierarchical structure typical of the native extracellular matrix. In this new contest our work present: 1) an innovative device for the fabrication of multi material scaffolds based on an open source FDM 3D printer suitably modified to integrate a multi nozzle deposition tool 2) a design proposal for a multi material and multi scale machine to allow a full control over the modulation of the building materials and of the topography in a scaffold 3) and lastly a CAD workflow to guide the fabrication of RP patient specific scaffolds. Multifunctional hydrogel-based scaffold are fabricated as a demonstration of the validity of the proposed devices. Starting from a clinical case we print a patient-specific scaffold with the aim to recover bone defects at mandibular level as a validation of the proposed CAD process.


2006 ◽  
Vol 132 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Elizabeth M. Ngan ◽  
Ivan M. Rebeyka ◽  
David B. Ross ◽  
Mohamed Hirji ◽  
Johan F. Wolfaardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document