Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens

2011 ◽  
Vol 56 (28) ◽  
pp. 10791-10795 ◽  
Author(s):  
Germán D. Schrott ◽  
P. Sebastian Bonanni ◽  
Luciana Robuschi ◽  
Abraham Esteve-Nuñez ◽  
Juan Pablo Busalmen
2021 ◽  
Author(s):  
Xiaojia He ◽  
Grayson Chadwick ◽  
Fernanda Jiménez Otero ◽  
Victoria Orphan ◽  
Christof Meile

2021 ◽  
Author(s):  
Xiaojia He ◽  
Grayson Chadwick ◽  
Fernanda Jiménez Otero ◽  
Victoria Orphan ◽  
Christof Meile

mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Madeline Vargas ◽  
Nikhil S. Malvankar ◽  
Pier-Luc Tremblay ◽  
Ching Leang ◽  
Jessica A. Smith ◽  
...  

ABSTRACTIt has been proposed thatGeobacter sulfurreducensrequires conductive pili for long-range electron transport to Fe(III) oxides and for high-density current production in microbial fuel cells. In order to investigate this further, we constructed a strain ofG. sulfurreducens, designated Aro-5, which produced pili with diminished conductivity. This was accomplished by modifying the amino acid sequence of PilA, the structural pilin protein. An alanine was substituted for each of the five aromatic amino acids in the carboxyl terminus of PilA, the region in whichG. sulfurreducensPilA differs most significantly from the PilAs of microorganisms incapable of long-range extracellular electron transport. Strain Aro-5 produced pili that were properly decorated with the multihemec-type cytochrome OmcS, which is essential for Fe(III) oxide reduction. However, pili preparations of the Aro-5 strain had greatly diminished conductivity and Aro-5 cultures were severely limited in their capacity to reduce Fe(III) compared to the control strain. Current production of the Aro-5 strain, with a graphite anode serving as the electron acceptor, was less than 10% of that of the control strain. The conductivity of the Aro-5 biofilms was 10-fold lower than the control strain’s. These results demonstrate that the pili ofG. sulfurreducensmust be conductive in order for the cells to be effective in extracellular long-range electron transport.IMPORTANCEExtracellular electron transfer byGeobacterspecies plays an important role in the biogeochemistry of soils and sediments and has a number of bioenergy applications. For example, microbial reduction of Fe(III) oxide is one of the most geochemically significant processes in anaerobic soils, aquatic sediments, and aquifers, andGeobacterorganisms are often abundant in such environments.Geobacter sulfurreducensproduces the highest current densities of any known pure culture, and close relatives are often the most abundant organisms colonizing anodes in microbial fuel cells that harvest electricity from wastewater or aquatic sediments. The finding that a strain ofG. sulfurreducensthat produces pili with low conductivity is limited in these extracellular electron transport functions provides further insight into these environmentally significant processes.


2012 ◽  
Vol 40 (6) ◽  
pp. 1186-1190 ◽  
Author(s):  
Derek R. Lovley

The mechanisms for Fe(III) oxide reduction by Geobacter species are of interest because Geobacter species have been shown to play an important role in Fe(III) oxide reduction in a diversity of environments in which Fe(III) reduction is a geochemically significant process. Geobacter species specifically express pili during growth on Fe(III) oxide compared with growth on soluble chelated Fe(III), and mutants that cannot produce pili are unable to effectively reduce Fe(III) oxide. The pili of Geobacter sulfurreducens are electrically conductive along their length under physiologically relevant conditions and exhibit a metallic-like conductivity similar to that observed previously in synthetic organic metals. Metallic-like conductivity in a biological protein filament is a previously unrecognized mechanism for electron transport that differs significantly from the more well-known biological strategy of electron hopping/tunnelling between closely spaced redox-active proteins. The multihaem c-type cytochrome OmcS is specifically associated with pili and is necessary for Fe(III) oxide reduction. However, multiple lines of evidence, including the metallic-like conductivity of the pili and the fact that OmcS molecules are spaced too far apart for electron hopping/tunnelling, indicate that OmcS is not responsible for long-range electron conduction along the pili. The role of OmcS may be to facilitate electron transfer from the pili to Fe(III) oxide. Long-range electron transport via pili with metallic-like conductivity is a paradigm shift that has important implications not only for Fe(III) oxide reduction, but also for interspecies electron exchange in syntrophic microbial communities as well as microbe–electrode interactions and the emerging field of bioelectronics.


1974 ◽  
Vol 29 (9-10) ◽  
pp. 545-551 ◽  
Author(s):  
Walter Oettmeier ◽  
Rolf Grewe

Abstract Various mono-and diazaphenanthrenes were prepared and assayed for their activity as inhibi­tors of photosynthetic electron flow in isolated chloroplasts in order to get more insight into the mechanism of action of the well known inhibitor o-phenanthroline = 1,10-diazaphenanthrene. The results show that 1-, 4-and 5-azaphenanthrene are only slightly less active than 1,10-diazaphen-anthrene. In the case of the different diazaphenanthrenes, 1,4-, 1,7-and 5,6-diazaphenanthrene exhibited somewhat lower activity than 1,10-diaphenanthrene, whereas 2,9-and 4,7-diazaphen-anthrene were completely inactive. Substitution at C-atoms of 1,10-diazaphenanthrene leads to an increase in activity in the case of the 4-and 7-position, regardless of electropositive or electro­ negative substituents, whereas substitution at the 2-, 3-, 5-, 6-, 8-and 9-position leads to a de­ creased activity. The ability of 1,10-diazaphenanthrene to form iron complexes seems to be of little relevance to the inhibitory activity on photosynthetic electron transport. This follows also from the fact that other strong iron complexing agens, like 2.2'-bipyridine or 8-hydroxyquinoline, are not inhibitory


2018 ◽  
Vol 20 (40) ◽  
pp. 25648-25656 ◽  
Author(s):  
Joel Golden ◽  
Matthew D. Yates ◽  
Michelle Halsted ◽  
Leonard Tender

Results reveal that for an electrode-grown Geobacter sulfurreducens biofilm, as much as 70% of cytochrome hemes residing within hundreds of nanometers from the electrode surface store electrons even as extracellular electron transport is occurring across the biofilm/electrode interface.


2013 ◽  
Vol 4 ◽  
pp. 781-792 ◽  
Author(s):  
Francesc Salvat-Pujol ◽  
Harald O Jeschke ◽  
Roser Valentí

We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments.


2015 ◽  
Vol 17 (48) ◽  
pp. 32564-32570 ◽  
Author(s):  
Matthew D. Yates ◽  
Joel P. Golden ◽  
Jared Roy ◽  
Sarah M. Strycharz-Glaven ◽  
Stanislav Tsoi ◽  
...  

The rate of extracellular electron transport through living, electrode-grown Geobacter sulfurreducens biofilms decreases with decreasing temperature, consistent with incoherent redox conductivity (electron hopping) among hemes of c-type cytochromes to conductive surfaces.


Sign in / Sign up

Export Citation Format

Share Document