Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion

2012 ◽  
Vol 78 ◽  
pp. 236-243 ◽  
Author(s):  
Yu-Yen Kuo ◽  
Tze-Huei Li ◽  
Jing-Neng Yao ◽  
Chiung-Yuan Lin ◽  
Chao-Hsin Chien
1986 ◽  
Vol 51 (7) ◽  
pp. 1430-1438 ◽  
Author(s):  
Alena Reissová ◽  
Zdeněk Bastl ◽  
Martin Čapka

The title complexes have been obtained by functionalization of silica with cyclopentadienylsilanes of the type Rx(CH3)3 - xSi(CH2)nC5H5 (x = 1-3, n = 0, 1, 3), trimethylsilylation of free surface hydroxyl groups, transformation of the bonded cyclopentadienyl group to the cyclopentadienyl anion, followed by coordination of (h5-cyclopentadienyl)trichlorotitanium. The effects of single steps of the above immobilization on texture of the support, the number of free hydroxyl groups, the coverage of the surface by cyclopentadienyl groups and the degree of their utilization in anchoring the titanium complex have been investigated. ESCA study has shown that the above anchoring leads to formation of the silica-supported bis(h5-cyclopentadienyl)dichlorotitanium(IV) complex.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 510
Author(s):  
Wangzhu Cao ◽  
Kunfeng Chen ◽  
Dongfeng Xue

Nanoscale engineering of regular structured materials is immensely demanded in various scientific areas. In this work, vertically oriented TiO2 nanotube arrays were grown by self-organizing electrochemical anodization. The effects of different fluoride ion concentrations (0.2 and 0.5 wt% NH4F) and different anodization times (2, 5, 10 and 20 h) on the morphology of nanotubes were systematically studied in an organic electrolyte (glycol). The growth mechanisms of amorphous and anatase TiO2 nanotubes were also studied. Under optimized conditions, we obtained TiO2 nanotubes with tube diameters of 70–160 nm and tube lengths of 6.5–45 μm. Serving as free-standing and binder-free electrodes, the kinetic, capacity, and stability performances of TiO2 nanotubes were tested as lithium-ion battery anodes. This work provides a facile strategy for constructing self-organized materials with optimized functionalities for applications.


Sign in / Sign up

Export Citation Format

Share Document