photoelectrocatalytic degradation
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 95)

H-INDEX

45
(FIVE YEARS 8)

2022 ◽  
Vol 145 ◽  
pp. 111539
Author(s):  
Thiago M. Prado ◽  
Fernando Lindo Silva ◽  
Amanda Carrico ◽  
Marcos Roberto de Vasconcelos Lanza ◽  
Orlando Fatibello-Filho ◽  
...  

Author(s):  
Thalita Ferreira da Silva ◽  
Rodrigo Pereira Cavalcante ◽  
Diego Roberto Vieira Guelfi ◽  
Silvio César de Oliveira ◽  
Gleison Antonio Casagrande ◽  
...  

2021 ◽  
pp. 123-131
Author(s):  
Jayabharathi Jayapal ◽  
M. Thenmozhi

In the present study, the removal of m- cresol in an aqueous medium was studied by the photoelectrocatalytic (PEC) degradation by the TiO2 suspension on dip-coated stainless steel electrode under UV lamp of the wavelength of 352nm. The performance of the PEC method on the degradation of m- cresol was studied by made the comparison with the photocatalytic oxidation (PCO) method in terms of COD removal and kinetic study. In the PEC study on the degradation of m- cresol pollutant was studied by the various parameters such as initial concentration, pH, and the bias potential. The result found that the optimum degradation efficiency of m- cresol in the PEC and PCO methods were 79.6% and 39.8% at pH 5.0. The result showed that the kinetic constants (k) in the PEC and PCO methods were -0.0116 and -0.0058 under optimum conditions. The result found that the PEC method using TiO2 coated on stainless steel electrode is two times higher than the PCO method on the degradation of m- cresol.


Author(s):  
Linsheng Zeng ◽  
Zichun He ◽  
Yongping Luo ◽  
Jitao Xu ◽  
Jiansheng Chen ◽  
...  

Abstract In this work, highly ordered titanium dioxide nanotube arrays (TNTs) were first prepared by anodic oxidation method. Then, g-C3N4/TNTs heterojunctions were prepared by ultrasonically loading graphitic carbon nitride (g-C3N4) onto the TNTs. The morphology and crystal structure of TNTs and g-C3N4/TNTs were characterized by SEM and XRD. The photoelectrocatalytic (PEC) degradation of methyl orange (MO) by TNTs and g-C3N4/TNTs was studied in a PEC degradation system. The photocatalytic (PC), electrocatalytic (EC), and PEC degradation properties were compared, and the effect of pollutant concentration on the degradation performance of the catalysts was analyzed. According to the experimental results, the degradation rate of MO with TNTs only reaches 65.1% after 120 min, while the degradation rate of MO with g-C3N4/TNTs reaches 84.6% in the same time. Due to the synergistic effect of light and electricity, the PEC degradation efficiency of the two catalysts is greater than the sum of PC and EC degradation, proving that g-C3N4/TNTs heterojunctions provide excellent PEC performance for the degradation of MO.


Author(s):  
R.S. Pedanekar ◽  
S.B. Madake ◽  
N.A. Narewadikar ◽  
S.V. Mohite ◽  
A.R. Patil ◽  
...  

2021 ◽  
Vol 6 (32) ◽  
pp. 8435-8445
Author(s):  
Qiao Cong ◽  
Miao Ren ◽  
Tingting Zhang ◽  
Fangyuan Cheng ◽  
Jiao Qu

2021 ◽  
Vol 891 ◽  
pp. 49-55
Author(s):  
Edgar Clyde R. Lopez ◽  
Nicole Elyse B. Saputil ◽  
Lance A. Loza ◽  
Fiona Fritz G. Camiguing ◽  
Marlon L. Mopon Jr. ◽  
...  

Photoelectrocatalysis has emerged as a promising technology to degrade recalcitrant pollutants such as textile dyes in wastewater completely. Titanium dioxide is typically used as a photocatalyst, but its wide bandgap constrains its use to the use of ultraviolet light. To extend its use to the visible-light region, we doped titanium dioxide nanotubes with iron and sulfur. We used them as a photoelectrode for the photoelectrocatalytic degradation of a model pollutant – phenol red. Response surface methodology using a Box-Behnken design of experiments was used to investigate the effects of initial dye concentration, applied potential, and dopant loading on phenol red degradation kinetics. Statistical analysis showed that our reduced cubic model adequately correlates these parameters. The fastest dye degradation rate was achieved at the optimized conditions: initial phenol red concentration = 5.0326 mg L-1, applied voltage = 29.9686 V, and dopant loading = 1.2244 wt.%. Complete degradation of phenol red may be achieved after 11.77 hours of treatment under the optimized conditions in a batch reactor. Our model's robustness enables it to be used for process modeling and a basis for designing scaled-up photoelectrocatalytic reactors.


Sign in / Sign up

Export Citation Format

Share Document