Microelectrode techniques for corrosion research of iron

2013 ◽  
Vol 113 ◽  
pp. 741-747 ◽  
Author(s):  
K. Fushimi ◽  
Y. Takabatake ◽  
T. Nakanishi ◽  
Y. Hasegawa
1998 ◽  
Vol 274 (3) ◽  
pp. H829-H845 ◽  
Author(s):  
Bum-Rak Choi ◽  
Guy Salama

The mechanisms responsible for atrioventricular (AV) delay remain unclear, in part due to the inability to map electrical activity by conventional microelectrode techniques. In this study, voltage-sensitive dyes and imaging techniques were refined to detect action potentials (APs) from the small cells comprising the AV node and to map activation from the “compact” node. Optical APs (124) were recorded from 5 × 5 mm (∼0.5-mm depth) AV zones of perfused rabbit hearts stained with a voltage-sensitive dye. Signals from the node exhibited a set of three spikes; the first and third ( peaks I and III) were coincident with atrial (A) and ventricular (V) electrograms, respectively. The second spike ( peak II) represented the firing of midnodal (N) and/or lower nodal (NH) cell APs as indicated by their small amplitude, propagation pattern, location determined from superimposition of activation maps and histological sections of the node region, dependence on depth of focus, and insensitivity to tetrodotoxin (TTX). AV delays consisted of τ1 (49.5 ± 6.59 ms, 300-ms cycle length), the interval between peaks I and II (perhaps AN to N cells), and τ2 (57.57 ± 5.15 ms), the interval between peaks II and III (N to V cells). The conductance time across the node was 10.33 ± 3.21 ms, indicating an apparent conduction velocity (ΘN) of 0.162 ± 0.02 m/s ( n = 9) that was insensitive to TTX. In contrast, τ1 correlated with changes in AV node delays (measured with surface electrodes) caused by changes in heart rate or perfusion with acetylcholine. The data provide the first maps of activation across the AV node and demonstrate that ΘN is faster than previously presumed. These findings are inconsistent with theories of decremental conduction and prove the existence of a conduction barrier between the atrium and the AV node that is an important determinant of AV node delay.


1980 ◽  
Vol 238 (2) ◽  
pp. H237-H243
Author(s):  
S. L. Lipsius ◽  
W. R. Gibbons

The effect of acetylcholine (ACh) on the electrical activity of sheep cardiac Purkinje fibers was studied using standard microelectrode techniques. Most fibers showed a definite sequence of changes when exposed to ACh. Initially, action potential duration (APD) increased markedly. After about 20 s, the maximum diastolic potential (MDP) started to become more negative and, at the same time, the rate of increase in APD slowed. Once the MDP stabilized at a more negative level, the APD usually resumed its rapid increase. ACh also increased the slope of diastolic depolarization and made the plateau voltage more positive. APD was increased by ACh concentrations as low as 10(-7) M, and it increased with concentrations up to 10(-5) M (the highest concentration tested). ACh-induced increases in APD depended on the stimulation frequency; 2-min exposures to 10(-6) M ACh increased APD by 76.8 +/- 14.7% at 6 min-1 and 17.7 +/- 4.2% at 60 min-1. Atropine blocked all the effects of ACh. Hexamethonium did not prevent the ACh effects. It is concluded that ACh acts via muscarinic receptors. The changes in APD and MDP appear to be separate events, and it is difficult to see how the former effect may be explained by known actions of ACh.


2014 ◽  
Vol 26 (11) ◽  
pp. 3414-3416
Author(s):  
Guangjun Yang ◽  
Xu Luo

Sign in / Sign up

Export Citation Format

Share Document