Porous manganese oxide nanocubes enforced by solid electrolyte interphase as anode of high energy density battery

2017 ◽  
Vol 224 ◽  
pp. 251-259 ◽  
Author(s):  
Xiaoqiao Chen ◽  
Yunmin Zhu ◽  
Bin Li ◽  
Pengbo Hong ◽  
Xueyi Luo ◽  
...  
2020 ◽  
Vol 132 (8) ◽  
pp. 3278-3283 ◽  
Author(s):  
Xue‐Qiang Zhang ◽  
Tao Li ◽  
Bo‐Quan Li ◽  
Rui Zhang ◽  
Peng Shi ◽  
...  

2020 ◽  
Vol 22 (23) ◽  
pp. 12918-12928
Author(s):  
Junwu Sang ◽  
Yuran Yu ◽  
Zhuo Wang ◽  
Guosheng Shao

A major problem against the realization of high energy density and safe solid Li-ion batteries lies in detrimental reactions at the interface between the lithium anode and the solid electrolytes.


2020 ◽  
Vol 56 (59) ◽  
pp. 8257-8260
Author(s):  
Shouyi Yuan ◽  
Junwei Lucas Bao ◽  
Nan Wang ◽  
Xiang Zhang ◽  
Yonggang Wang ◽  
...  

An optimized carbonate-based electrolyte is proposed for Li metal batteries with a high-voltage cathode and limited Li metal.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sewon Park ◽  
Seo Yeong Jeong ◽  
Tae Kyung Lee ◽  
Min Woo Park ◽  
Hyeong Yong Lim ◽  
...  

AbstractSolid electrolyte interphases generated using electrolyte additives are key for anode-electrolyte interactions and for enhancing the lithium-ion battery lifespan. Classical solid electrolyte interphase additives, such as vinylene carbonate and fluoroethylene carbonate, have limited potential for simultaneously achieving a long lifespan and fast chargeability in high-energy-density lithium-ion batteries (LIBs). Here we report a next-generation synthetic additive approach that allows to form a highly stable electrode-electrolyte interface architecture from fluorinated and silylated electrolyte additives; it endures the lithiation-induced volume expansion of Si-embedded anodes and provides ion channels for facile Li-ion transport while protecting the Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes. The retrosynthetically designed solid electrolyte interphase-forming additives, 5-methyl-4-((trifluoromethoxy)methyl)-1,3-dioxol-2-one and 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one, provide spatial flexibility to the vinylene carbonate-derived solid electrolyte interphase via polymeric propagation with the vinyl group of vinylene carbonate. The interface architecture from the synthesized vinylene carbonate-type additive enables high-energy-density LIBs with 81.5% capacity retention after 400 cycles at 1 C and fast charging capability (1.9% capacity fading after 100 cycles at 3 C).


2020 ◽  
Vol 117 (26) ◽  
pp. 14712-14720 ◽  
Author(s):  
Chao Luo ◽  
Enyuan Hu ◽  
Karen J. Gaskell ◽  
Xiulin Fan ◽  
Tao Gao ◽  
...  

Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C–S and O–S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g−1(based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg−1. The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.


Sign in / Sign up

Export Citation Format

Share Document