key functional groups
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 4)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2032
Author(s):  
Oisín Kavanagh ◽  
Robert Elmes ◽  
Finbarr O’Sullivan ◽  
John Farragher ◽  
Shane Robinson ◽  
...  

The importance of zinc in biology has gained greater recognition in recent years due to its essential contributions to the function of many endogenous enzymes. Disruption of zinc homeostasis may be useful in treating pathological conditions, such as Alzheimer’s, and for antiviral purposes. Despite the growth of knowledge and increased interest in zinc, little is known about the structure and function of zinc ionophores. In this study we analyse the Cambridge Structural Database and solution complexation studies found in the literature to identify key functional groups which may confer zinc ionophorism. Pharmaceuticals, nutraceuticals and amino acids with these functionalities were selected to enable us to explore the translatability of ionophoric activity from in vitro assays to cellular systems. We find that although certain species may complex to zinc in the solid and solution states, and may carry ions across simple membrane systems, this does not necessarily translate into ionophoric activity. We propose that the CSD can help refine key functionalities but that ionophoric activity must be confirmed in cellular systems.


2021 ◽  
Vol 28 ◽  
pp. 135-139
Author(s):  
O. V. Rayevsky ◽  
O. M. Demchyk ◽  
P. A. Karpov ◽  
S. P. Ozheredov ◽  
S. I. Spivak ◽  
...  

Aim. Search for new dinitroaniline and phosphorothioamide compounds, capable of selective binding with Plasmodium α-tubulin, affecting its mitotic apparatus. Methods. Structural biology methods of computational prediction of protein-ligand interaction: molecular docking, molecular dynamics and pharmacophore analysis. Selection of compounds based on pharmacophore characteristics and virtual screening results. Results. The protocol and required structural conditions for target (α-tubulin of P. falciparum) preparation and correct modeling of the ligand-protein interaction (docking and virtual screening) were developed. The generalized pharmacophore model of ligand-protein interaction and key functional groups of ligands responsible for specific binding were identified. Conclusions. Based on results of virtual screening, 22 commercial compounds were selected. Identified compounds proposed as potential inhibitors of Plasmodium mitotic machinery and the base of new antimalarial drugs. Keywords: malaria, Plasmodium, intermolecular interaction, dinitroaniline derived, phosphorothioamidate derived.


Synthesis ◽  
2021 ◽  
Author(s):  
Daiki Doiuchi ◽  
Tatsuya Uchida

C–H bonds are ubiquitous and abundant in organic molecules. If such C–H bonds can be converted to the desired functional groups in a site-, chemo-, diastereo-, and enantio-selective manner, the functionalization of C–H bonds would be an efficient tool for the step-, atom- and redox-economic organic synthesis. C–H oxidation is one of a typical C–H functionalization, to afford hydroxy and carbonyl groups, which are essential key functional groups in organic synthesis and biological chemistry, directly. Recently, significant developments have been made using non-heme-type transition metal catalysts. Oxygen functional groups can be introduced to not only simple hydrocarbons but also complicated natural products. In this paper, the recent developments, during the last fourteen years, of non-heme-type complex-catalyzed C–H oxidations are reviewed.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2256
Author(s):  
Serenella Nardi ◽  
Michela Schiavon ◽  
Ornella Francioso

Humic substances (HS) are dominant components of soil organic matter and are recognized as natural, effective growth promoters to be used in sustainable agriculture. In recent years, many efforts have been made to get insights on the relationship between HS chemical structure and their biological activity in plants using combinatory approaches. Relevant results highlight the existence of key functional groups in HS that might trigger positive local and systemic physiological responses via a complex network of hormone-like signaling pathways. The biological activity of HS finely relies on their dosage, origin, molecular size, degree of hydrophobicity and aromaticity, and spatial distribution of hydrophilic and hydrophobic domains. The molecular size of HS also impacts their mode of action in plants, as low molecular size HS can enter the root cells and directly elicit intracellular signals, while high molecular size HS bind to external cell receptors to induce molecular responses. Main targets of HS in plants are nutrient transporters, plasma membrane H+-ATPases, hormone routes, genes/enzymes involved in nitrogen assimilation, cell division, and development. This review aims to give a detailed survey of the mechanisms associated to the growth regulatory functions of HS in view of their use in sustainable technologies.


2021 ◽  
Author(s):  
Bin Zheng ◽  
Chao Hang ◽  
Jason Zhu ◽  
Geoffrey Purdum ◽  
Melda Sezen-Edmonds ◽  
...  

A highly stereoselective synthesis of a cyclic dinucleotide (CDN) STING agonist containing two chiral thiophosphoramidate linkages is described. These rare, yet key functional groups were, for the first time, installed efficiently and with high diastereoselectivity using a specially designed P(V) reagent. By utilizing this strategy, the CDN was prepared in greater than sixteen-fold higher yield than the prior P(III) approach, with fewer hazardous reagents and chromatographic purifications.


2021 ◽  
Author(s):  
Bin Zheng ◽  
Chao Hang ◽  
Jason Zhu ◽  
Geoffrey Purdum ◽  
Melda Sezen-Edmonds ◽  
...  

A highly stereoselective synthesis of a cyclic dinucleotide (CDN) STING agonist containing two chiral thiophosphoramidate linkages is described. These rare, yet key functional groups were, for the first time, installed efficiently and with high diastereoselectivity using a specially designed P(V) reagent. By utilizing this strategy, the CDN was prepared in greater than sixteen-fold higher yield than the prior P(III) approach, with fewer hazardous reagents and chromatographic purifications.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 90
Author(s):  
Yun Kim ◽  
Yeong Ji ◽  
Na-Hyun Kim ◽  
Nguyen Van Tu ◽  
Jung-Rae Rho ◽  
...  

Using bio-guided fractionation and based on the inhibitory activities of nitric oxide (NO) and prostaglandin E2 (PGE2), eight isoquinolinequinone derivatives (1–8) were isolated from the marine sponge Haliclona sp. Among these, methyl O-demethylrenierate (1) is a noble ester, whereas compounds 2 and 3 are new O-demethyl derivatives of known isoquinolinequinones. Compound 8 was assigned as a new 21-dehydroxyrenieramycin F. Anti-inflammatory activities of the isolated compounds were tested in a co-culture system of human epithelial Caco-2 and THP-1 macrophages. The isolated derivatives showed variable activities. O-demethyl renierone (5) showed the highest activity, while 3 and 7 showed moderate activities. These bioactive isoquinolinequinones inhibited lipopolysaccharide and interferon gamma-induced production of NO and PGE2. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and the phosphorylation of MAPKs were down-regulated in response to the inhibition of NF-κB nuclear translocation. In addition, nuclear translocation was markedly promoted with a subsequent increase in the expression of HO-1. Structure-activity relationship studies showed that the hydroxyl group in 3 and 5, and the N-formyl group in 7 may be key functional groups responsible for their anti-inflammatory activities. These findings suggest the potential use of Haliclona sp. and its metabolites as pharmaceuticals treating inflammation-related diseases including inflammatory bowel disease.


Author(s):  
Dan Yuan ◽  
Haijing Yuan ◽  
Xiaodong He ◽  
Huixian Hu ◽  
Shuping Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document