NaTi2(PO4)3@C nanoparticles embedded in 2D sulfur-doped graphene sheets as high-performance anode materials for sodium energy storage

2018 ◽  
Vol 289 ◽  
pp. 131-138 ◽  
Author(s):  
Meijuan Sun ◽  
Xiulin Han ◽  
Shuguang Chen
RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43811-43824
Author(s):  
Thanapat Autthawong ◽  
Yothin Chimupala ◽  
Mitsutaka Haruta ◽  
Hiroki Kurata ◽  
Tsutomu Kiyomura ◽  
...  

The TiO2-bronze/nitrogen-doped graphene nanocomposites have the potential for fast-charging and have high stability, showing potential as an anode material in advanced power batteries for next-generation applications.


2017 ◽  
Vol 2 (20) ◽  
pp. 5518-5523 ◽  
Author(s):  
Jie Chen ◽  
Chao Wu ◽  
Chun Tang ◽  
Wenxi Zhao ◽  
Maowen Xu ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengjiao Shi ◽  
Su Zhang ◽  
Yuting Jiang ◽  
Zimu Jiang ◽  
Longhai Zhang ◽  
...  

AbstractThe development of lithium–sulfur batteries (LSBs) is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect. Herein, an N, O co-doped graphene layered block (NOGB) with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSBs. The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold, ensuring structural stability and high conductivity. The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption. Moreover, the micropores on the graphene sheets enable fast Li+ transport through the blocks. As a result, the obtained NOGB/S composite with 76 wt% sulfur content shows a high capacity of 1413 mAh g−1 at 0.1 C, good rate performance of 433 mAh g−1 at 10 C, and remarkable stability with 526 mAh g−1 at after 1000 cycles at 1 C (average decay rate: 0.038% per cycle). Our design provides a comprehensive route for simultaneously improving the conductivity, ion transport kinetics, and preventing the shuttle effect in LSBs.


Sign in / Sign up

Export Citation Format

Share Document