scholarly journals Sandwiching Sulfur into the Dents Between N, O Co-Doped Graphene Layered Blocks with Strong Physicochemical Confinements for Stable and High-Rate Li–S Batteries

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengjiao Shi ◽  
Su Zhang ◽  
Yuting Jiang ◽  
Zimu Jiang ◽  
Longhai Zhang ◽  
...  

AbstractThe development of lithium–sulfur batteries (LSBs) is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect. Herein, an N, O co-doped graphene layered block (NOGB) with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSBs. The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold, ensuring structural stability and high conductivity. The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption. Moreover, the micropores on the graphene sheets enable fast Li+ transport through the blocks. As a result, the obtained NOGB/S composite with 76 wt% sulfur content shows a high capacity of 1413 mAh g−1 at 0.1 C, good rate performance of 433 mAh g−1 at 10 C, and remarkable stability with 526 mAh g−1 at after 1000 cycles at 1 C (average decay rate: 0.038% per cycle). Our design provides a comprehensive route for simultaneously improving the conductivity, ion transport kinetics, and preventing the shuttle effect in LSBs.

2021 ◽  
Author(s):  
Dongke Zhang ◽  
Ting Huang ◽  
Pengfei Zhao ◽  
Ze Zhang ◽  
Xingtao Qi ◽  
...  

Abstract Due to the low conductivity of sulfur and the dissolution of polysulfides, the research and application of lithium-sulfur (Li-S) batteries have encountered certain resistance. Increasing conductivity and introducing polarity into the sulfur host can effectively overcome these long-standing problems. Herein, We first prepared Co3W3C@ C@ CNTs / S material and used it in the cathode of lithium-sulfur batteries, The existence of carboxylated CNTs can form a conductive network, accelerate the transmission of electrons and improve the rate performance, and polar Co3W3C can form a strong interaction with polysulfide intermediates, effectively inhibiting its shuttle effect, improving the utilization of sulfur cathode electrodes, and improving the capacity and cycle stability. The Co3W3C@C@CNTs / S electrode material has a capacity of 1,093 mA h g-1 at a 0.1 A g− 1 and 482 mA h g-1 at 5 A g− 1. Even after 500 cycles of 2 A g− 1, the capacity of each cycle is only reduced by 0.08%. The excellent stability of this material can provide a new idea for the future development of lithium-sulfur batteries.


Author(s):  
Meng Zhang ◽  
Lu Wang ◽  
Bin Wang ◽  
Bo Zhang ◽  
Xiuping Sun ◽  
...  

P-Fe4N@NPG is conveniently fabricated and used as sulfur host for Li–S batteries. The P-Fe4N@NPG has a strong affinity for LiPSs, stable structure and good electrical conductivity, which could improve the electrochemical performance effectively.


2019 ◽  
Vol 7 (30) ◽  
pp. 18100-18108 ◽  
Author(s):  
Jie Xu ◽  
Shiming Bi ◽  
Weiqiang Tang ◽  
Qi Kang ◽  
Dongfang Niu ◽  
...  

The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li–S batteries with high rate, high sulfur content and high capacity retention.


RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1375-1383
Author(s):  
Haili Zhao ◽  
Peng Chen ◽  
Yu Fan ◽  
Junkai Zhang ◽  
HongSheng Jia ◽  
...  

Design of two-dimensional graphene with dispersed Co–N catalysts as a multifunctional S holding material in Li–S batteries to improve the retention of LiPSs and accelerate the reaction kinetics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2267
Author(s):  
Haisheng Han ◽  
Tong Wang ◽  
Yongguang Zhang ◽  
Arailym Nurpeissova ◽  
Zhumabay Bakenov

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium–sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g−1 and maintained a capacity of 991 mAh g−1 after 100 cycles at 0.2 C as a cathode in a lithium–sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g−1, as well as a high areal capacity (4.47 mAh cm−2) under high loading (5 mg cm−2).


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuemei Zhang ◽  
Yunhong Wei ◽  
Boya Wang ◽  
Mei Wang ◽  
Yun Zhang ◽  
...  

Abstract Boosting the utilization efficiency of sulfur electrodes and suppressing the “shuttle effect” of intermediate polysulfides remain the critical challenge for high-performance lithium–sulfur batteries (LSBs). However, most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading, as well as to mitigate the more serious shuttle effect of polysulfides, especially when worked at an elevated temperature. Herein, we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays (CoS2–CNA) into a nitrogen-rich 3D conductive scaffold (CTNF@CoS2–CNA) for LSBs. An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2–CNA were investigated. Besides, the strong capillarity effect and chemisorption of CTNF@CoS2–CNA to polysulfides enable high loading and efficient utilization of sulfur, thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature (55 °C). Even with the ultrahigh sulfur loading of 7.19 mg cm−2, the CTNF@CoS2–CNA/S cathode still exhibits high rate capacity at 55 °C.


RSC Advances ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 6346-6355 ◽  
Author(s):  
Nan Wang ◽  
Sikan Peng ◽  
Xiang Chen ◽  
Jixian Wang ◽  
Chen Wang ◽  
...  

Ultrathin MnO2 nanosheets and nano size sulfur particles distributed uniformly on the surface of G/CNT hybrids, which exhibit high rate performance and long-term cycling performance.


Sign in / Sign up

Export Citation Format

Share Document