A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults

2010 ◽  
Vol 42 (4) ◽  
pp. 477-490 ◽  
Author(s):  
Shengwei Wang ◽  
Qiang Zhou ◽  
Fu Xiao
Author(s):  
Magnus F. Asmussen ◽  
Henrik C. Pedersen ◽  
Lina Lilleengen ◽  
Andreas Larsen ◽  
Thomas Farsakoglou

Abstract Pitch systems impose an important part of today’s wind turbines, where they are both used for power regulation and serve as part of a turbines safety system. Any failure on a pitch system is therefore equal to an increase in downtime of the turbine and should hence be avoided. By implementing a Fault Detection and Diagnosis (FDD) scheme faults may be detected and estimated before resulting in a failure, thus increasing the availability and aiding in the maintenance of the wind turbine. The focus of this paper is therefore on the development of a FDD algorithm to detect leakage and sensor faults in a fluid power pitch system. The FDD algorithm is based on a State Augmented Extended Kalman Filter (SAEKF) and a bank of observers, which is designed utilizing an experimentally validated model of a pitch system. The SAEKF is designed to detect and estimate both internal and external leakage faults, while also estimating the unknown external load on the system, and the bank of observers to detect sensor drop-outs. From simulation it is found that the SAEKF may detect both abrupt and evolving internal and external leakages, while being robust towards noise and variation in system parameters. Similar it is found that the scheme is able to detect sensor drop-outs, but is less robust towards this.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Jingjing Liu ◽  
Min Zhang ◽  
Hai Wang ◽  
Wei Zhao ◽  
Yan Liu

This paper presents a fault detection and diagnosis (FDD) method, which uses one-dimensional convolutional neural network (1-D CNN) and WaveCluster clustering analysis to detect and diagnose sensor faults in the supply air temperature (Tsup) control loop of the air handling unit. In this approach, 1-D CNN is employed to extract man-guided features from raw data, and the extracted features are analyzed by WaveCluster clustering. The suspicious sensor faults are indicated and categorized by denoting clusters. Moreover, the Tc acquittal procedure is introduced to further improve the accuracy of FDD. In validation, false alarm ratio and missing diagnosis ratio are mainly used to demonstrate the efficiency of the proposed FDD method. Results show that the abrupt sensor faults in Tsup control loop can be efficiently detected and diagnosed, and the proposed method is equipped with good robustness within the noise range of 6 dBm∼13 dBm.


Sign in / Sign up

Export Citation Format

Share Document