air handling units
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 58)

H-INDEX

20
(FIVE YEARS 6)

2022 ◽  
Vol 6 (1) ◽  
pp. 1-28
Author(s):  
Rongrong Wang ◽  
Duc Van Le ◽  
Rui Tan ◽  
Yew-Wah Wong

At present, a co-location data center often applies an identical and low temperature setpoint for its all server rooms. Although increasing the temperature setpoint is a rule-of-thumb approach to reducing the cooling energy usage, the tenants may have different mentalities and technical constraints in accepting higher temperature setpoints. Thus, supporting distinct temperature setpoints is desirable for a co-location data center in pursuing higher energy efficiency. This calls for a new cooling power attribution scheme to address the inter-room heat transfers that can be up to 9% of server load as shown in our real experiments. This article describes our approaches to estimating the inter-room heat transfers, using the estimates to rectify the metered power usages of the rooms’ air handling units, and fairly attributing the power usage of the shared cooling infrastructure (i.e., chiller and cooling tower) to server rooms by following the Shapley value principle. Extensive numeric experiments based on a widely accepted cooling system model are conducted to evaluate the effectiveness of the proposed cooling power attribution scheme. A case study suggests that the proposed scheme incentivizes rational tenants to adopt their highest acceptable temperature setpoints under a non-cooperative game setting. Further analysis considering distinct relative humidity setpoints shows that our proposed scheme also properly and inherently addresses the attribution of humidity control power.


2021 ◽  
pp. 111709
Author(s):  
Panayiotis M. Papadopoulos ◽  
Georgios Lymperopoulos ◽  
Marios M. Polycarpou ◽  
Petros Ioannou

2021 ◽  
Vol 2042 (1) ◽  
pp. 012130
Author(s):  
Narges Torabi ◽  
H. Burak Gunay ◽  
William O’Brien

Abstract Faults in air-based heating, ventilation, and air conditioning (HVAC) systems lead to energy waste and discomfort. While the emphasis of fault detection and diagnostic (FDD) research has been on hard faults in actuators, sensors, and equipment, faults arising from human errors account for a significant portion of faults occurring in HVAC systems. In this paper, human errors occurring in air handling units (AHUs) and variable air volume (VAV) thermal zones during design, construction, and operation phases are identified through a review of the literature. Then, the faults are divided into six main categories. Based on case studies investigating these faults, the impact of each fault category on occupant comfort, energy consumption, and equipment life is discussed. The authors provide recommendations to minimize human errors in AHUs and VAV zones throughout the building life cycle.


2021 ◽  
pp. 111493
Author(s):  
Narges Torabi ◽  
H. Burak Gunay ◽  
William O'Brien ◽  
Ricardo Moromisato

2021 ◽  
Vol 129 ◽  
pp. 103781
Author(s):  
Xuechen Lei ◽  
Yan Chen ◽  
Mario Bergés ◽  
Burcu Akinci

Energy ◽  
2021 ◽  
pp. 121647
Author(s):  
Bernardo Peris Pérez ◽  
Miguel Ávila Gutiérrez ◽  
José Antonio Expósito Carrillo ◽  
José Manuel Salmerón Lissén

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4507
Author(s):  
Paolo Maria Congedo ◽  
Cristina Baglivo ◽  
Giulia Negro

This work proposes a new device for air treatment with dehumidification and water recovery/storage, with possible mitigation of indoor environmental conditions. The system is based on Peltier cells coupled with a horizontal earth-to-air heat exchanger, it is proposed as an easy-to-implement alternative to the heat pumps and air handling units currently used on the market, in terms of cost, ease of installation, and maintenance. The process provides the water collection from the cooling of warm-humid air through a process that leads to condensation and water vapor separation. The airflow generated by a fan splits into two dual flows that lap the two surfaces of the Peltier cells, one flow laps the cold surfaces undergoing sensible, latent cooling with dehumidification; the other flow laps the hot surfaces and heats up. The airflow undergoes thermal pre-treatment through the underground horizontal geothermal pipe that precedes the Peltier cells. In the water storage tank, which also works as a mixing chamber, the two air streams are mixed to regulate the outlet temperature. The system can be stand-alone if equipped with a photovoltaic panel and a micro wind turbine, able to be used in places where electricity is absent. The system, with different configurations, is modeled in the African city Kigali, in Rwanda.


Sign in / Sign up

Export Citation Format

Share Document