Thermal comfort in naturally ventilated spaces and under indirect evaporative passive cooling conditions in hot–humid climate

2013 ◽  
Vol 63 ◽  
pp. 79-86 ◽  
Author(s):  
Gaudy Bravo ◽  
Eduardo González
2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Maryam Qays Oleiwi ◽  
Mohd Farid Mohamed

Past years have witnessed the popularity of traditional Malay house as a common housing type in Malaysia. However, double-storey house has become one of the common types of low-rise housing in Malaysia. Several passive cooling strategies have been adopted to cope with the hot-humid climate of Malaysia. In this study, the thermal comfort of a double-storey house was examined when different passive cooling strategies that were adopted from traditional Malay houses were applied using IES-VE 2019 building simulation software. The simulation was conducted for various design strategies such as changing concrete roof tiles to clay roof tiles, adding two small openings to the attic, removing the ceiling between the upper floor and the attic, and extending the overhang by 50% of its length for all the four facades. All these strategies were tested and compared between full-day natural ventilation and without any ventilation. The thermal comfort of these strategies was graphically defined based on the operative temperature. These analyses revealed that protecting the building envelope by extending the overhang by 50% of its length for all the four facades could ensure the best thermal comfort is achieved compared to other selected strategies. Recommendations for further studies are also outlined in this paper.


2021 ◽  
Vol 881 (1) ◽  
pp. 012052
Author(s):  
E Meutia ◽  
E N Rauzi ◽  
Z Sahputra ◽  
D Maryana

Abstract The climates of countries in the tropics tend to have high temperatures and humidity, and intense solar insulation. This condition gives the impact of discomfort for humans who are in the building. Implementing a passive cooling strategy can reduce energy use. Traditional architecture is one of the buildings that has been believed to apply natural cooling as a passive cooling design strategy. Based on several previous studies on the application of passive designs to obtain thermal comfort in the room, this study was conducted to assess the thermal comfort of Modifying Rumoh Aceh, which has not been widely studied. This study uses a direct measurement method in the field using an anemometer to measure temperature and airflow velocity. An Infrared/Thermometer Gun is also used to measure the surface temperature of materials (walls, roofs, and floors). Using the Climate Consultant Software to obtain annual climate condition data, AndrewMarsh 3-D Sunpath was also used to assess the orientation of buildings. Measurements were carried out for 3 days on 15 samples of Modifying Rumoh Aceh in Gampong Jawa, Kutaraja sub-district, Banda Aceh. The results obtained indicate an increase in room temperature by 7ºC from the standard comfort temperature based on SNI. The human ability to adapt to the environment can be seen in the perception of the Gampong Jawa community in accepting changes in the thermal environment by 47% with a sense of satisfaction. However, further research is needed to obtain a value for the level of satisfaction of the thermal environment in the tropics area.


Author(s):  
Stanley Russell ◽  
Mark Weston ◽  
Yogi Goswami ◽  
Matthew Doll

Flex House is a flexible, modular, pre-fabricated zero energy building that can be mass produced and adapted easily to a variety of site conditions and plan configurations. The key factor shaping the design is central Florida’s hot humid climate and intense solar radiation. Flex house combines the wisdom of vernacular Florida houses with state of the art Zero Energy House technologies (ZEH.) A combined system of photovoltaic panels and solar thermal concentrating panels take advantage of the region’s abundant insolation in providing clean renewable energy for the house. Conservation is achieved with state of the art mechanical systems and innovative liquid desiccant dehumidification technology along with highly efficient lighting and appliances. The hybrid nature of the Flex house allows for both an open and closed system to take advantage of the seasonal temperature variation. Central Florida buildings can conserve energy by allowing natural ventilation to take advantage of passive cooling in the mild months of the year and use a closed system to utilize mechanical cooling when temperatures are too high for passive cooling strategies. The building envelope works equally well throughout the year combining an optimum level of insulation, resistance to air infiltration, transparency for daylight, and flexibility that allows for opening and closing of the house. Flex House is designed with a strong connection between interior spaces and the outdoors with carefully placed fenestration and a movable wall system which enables the house to transform in response to the temperature variations throughout the year. The house also addresses the massive heat gain that occurs through the roof, which can generate temperatures in excess of 140 degrees. Flex House incorporates a parasol-like outer structure that shades the roof, walls and courtyard minimizing heat gain through the building envelope. To be implemented on a large scale, ZEH must be affordable for people earning a moderate income. Site built construction is time consuming and wasteful and results in higher costs. Building homes in a controlled environment can reduce material waste, and construction costs while increasing efficiency. Pre-fabricating Flex House minimizes preparation time, waste and safety concerns and maximizes economy, quality control, efficiency and safety during the construction process. This paper is an account of the design and construction of Flex House, a ZEH for central Florida’s hot humid climate.


2020 ◽  
Vol 223 ◽  
pp. 110072 ◽  
Author(s):  
Ng Wai Tuck ◽  
Sheikh Ahmad Zaki ◽  
Aya Hagishima ◽  
Hom Bahadur Rijal ◽  
Fitri Yakub

2020 ◽  
Vol 197 ◽  
pp. 02006
Author(s):  
Miguel Chen Austin ◽  
Milvia Castillo ◽  
Ángela de Mendes Da Silva ◽  
Dafni Mora

The increasing concern expressed by building designers in Panama, due to new building-energy regulations, regarding sustainable development goals and energy efficiency, is leading architects to reanalyse their design strategies and evaluate the vernacular architecture. The main implications of the hot-humid climate characteristics stipulate that the need for cooling of indoor environments drives buildings’ design and settlements. This work aims to assess the use of bioclimatic architecture strategies in three existing building typologies design in Panama, in terms of thermal comfort performance. The approach adopted here is to compare and analyse the vernacular architecture with current architecture. Besides, to evaluate bioclimatic architecture strategies based on recent investigations and the guidelines proposed by Givony, Olgyay, among others. A numerical assessment was performed on the dynamic simulation software DesignBuilder, where the building’s passive strategies are evaluated in terms of operative temperature, relative humidity (rH), PMV, PPD, and discomfort hours (DH). All three houses, the HVA, HCA, and HRES were tested in three different locations within Panama City. Results showed that the strategies in HVA perform best for reducing rH levels, but the HRES performs best in overall thermal comfort performance, apart yet from the high rH levels encountered.


2018 ◽  
Vol 3 (8) ◽  
pp. 1-11
Author(s):  
Sharifah Khalizah Syed Othman Thani ◽  
Nik Hanita Nik Mohamad ◽  
Sabrina Idilfitri

This paper discusses a conceptual review of sustainable landscape design approach as mitigating strategies to modify urban temperature in a hot- humid climate.The amelioration of urban temperature through landscape approach can be achieved by incorporating sustainable landscape design practices via the interplay of natural vegetation in the hot-humid tropics. The findings of this paper are hoped to guide the practitioners in landscape architecture, policy makers and urban designers to incorporate sustainable landscape design approach towards improving outdoor thermal comfort; thus providing a better quality of life. Keywords: Landscape design principles; outdoor thermal comfort; urban heat island; hot-humid climate eISSN 2514-751X © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. https://doi.org/10.21834/aje-bs.v3i8.274 


Sign in / Sign up

Export Citation Format

Share Document