scholarly journals Influence of plant coverage on the total green roof energy balance and building energy consumption

2015 ◽  
Vol 103 ◽  
pp. 1-13 ◽  
Author(s):  
Neda Yaghoobian ◽  
Jelena Srebric
2017 ◽  
Vol 10 (7) ◽  
pp. 2801-2831 ◽  
Author(s):  
Robert Schoetter ◽  
Valéry Masson ◽  
Alexis Bourgeois ◽  
Margot Pellegrino ◽  
Jean-Pierre Lévy

Abstract. The anthropogenic heat flux can be an important part of the urban surface energy balance. Some of it is due to energy consumption inside buildings, which depends on building use and human behaviour, both of which are very heterogeneous in most urban areas. Urban canopy parametrisations (UCP), such as the Town Energy Balance (TEB), parametrise the effect of the buildings on the urban surface energy balance. They contain a simple building energy model. However, the variety of building use and human behaviour at grid point scale has not yet been represented in state of the art UCPs. In this study, we describe how we enhance the Town Energy Balance in order to take fractional building use and human behaviour into account. We describe how we parametrise different behaviours and initialise the model for applications in France. We evaluate the spatio-temporal variability of the simulated building energy consumption for the city of Toulouse. We show that a more detailed description of building use and human behaviour enhances the simulation results. The model developments lay the groundwork for simulations of coupled urban climate and building energy consumption which are relevant for both the urban climate and the climate change mitigation and adaptation communities.


2017 ◽  
Author(s):  
Robert Schoetter ◽  
Valéry Masson ◽  
Alexis Bourgeois ◽  
Margot Pellegrino ◽  
Jean-Pierre Lévy

Abstract. The anthropogenic heat flux can be an important part of the urban surface energy balance. Some of it is due to energy consumption inside buildings, which depends on building use and human behaviour, both of which are very heterogeneous in most urban areas. Urban Canopy Parametrisations (UCP), such as the Town Energy Balance (TEB), parametrise the effect of the buildings on the urban surface energy balance. They contain a simple building energy model. However, the variety of building use and human behaviour at grid point scale has not yet been represented in state of the art UCPs. In this study, we describe how we enhance the Town Energy Balance in order to take fractional building use and human behaviour into account. We describe how we parametrise different behaviours and initialise the model for applications in France. We evaluate the spatio-temporal variability of the simulated building energy consumption for the city of Toulouse. We show that a more detailed description of building use and human behaviour enhances the simulation results. The model developments lay the groundwork for simulations of coupled urban climate and building energy consumption which are relevant for both the urban climate and the climate change mitigation and adaptation communities.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4293 ◽  
Author(s):  
Mingshun Zhang ◽  
Xuan Ge ◽  
Ya Zhao ◽  
Chun Xia-Bauer

China’s regular energy statistics does not include the building sector, and data on building energy demand is included in other types of energy consumption in the Energy Balance Sheet (EBS). Therefore data on building energy demand is not collected based on statistics, but rather calculated or estimated by various approaches in China. This study aims at developing and testing China’s building energy statistics by applying an adapted EBS. The advantage of the adapted EBS is that statistical data is from the regular statistical system and no additional statistical efforts are needed. The research result shows that the adapted EBS can be included in China regular energy statistical system and can be standardized in a transparent way. Testing of the adapted EBS shows that China’s building energy demand has shown an annual increase of 7.6% since 2001, and a lower contribution to the total energy demand as compared to the developed world. There is also a close link to lifestyle and living standard while industrial energy demand is mainly driven by economy and decoupling of building energy demand with increasing of building floor area, this is due to a considerable improvement of building energy efficiency. The adapted EBS creates a method for China conducting statistics of building energy consumption at the sector level in a uniform way and serves as the basis for any sound building energy efficiency policy decisions.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


2021 ◽  
Vol 45 ◽  
pp. 101212
Author(s):  
Shuo Chen ◽  
Guomin Zhang ◽  
Xiaobo Xia ◽  
Yixing Chen ◽  
Sujeeva Setunge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document