Influences of compressor displacement ratio on dual-loop heat pump system for ventilation heat recovery

2020 ◽  
Vol 223 ◽  
pp. 110149
Author(s):  
Lei Wang ◽  
Guoyuan Ma ◽  
Feng Zhou
2018 ◽  
Author(s):  
Takao Katsura ◽  
Yutaka Shoji ◽  
Yoshiki Miyashita ◽  
Katsunori Nagano ◽  
Yasushi Nakamura

Author(s):  
Lanbin Liu ◽  
Lin Fu ◽  
Yi Jiang

Typically there is a great deal of waste heat available in drainage system of large-scale public bathhouses, such as public bathhouses in schools, barracks and natatoriums. The paper advances a heat pump system used in bathhouses for exhaust heat recovery. The system consists of solar energy collection system, drainage collection system and heat pump system for exhaust heat recovery. In the system, tap water is heated by energy from solar energy collection system, and is used as hot water for bathing at the beginning. At the same time, drainage collection system collects sewage from bathhouses, and then electric heat pump starts up and recovers the exhaust heat in sewage and heats the tap water. In this way, heat is recycled. Practical operation of the system was introduced, and drainage temperature as well as equipment capacity was optimized based on a practical example. Compared with gas-fired (oil-fired, coal-fired, electric) boilers, the system has advantages of lower energy consumption, less pollution and lower operating cost. Therefore, the system has great superiority in energy conservation and has a good application prospect.


2014 ◽  
Vol 521 ◽  
pp. 757-761 ◽  
Author(s):  
Sheng Hao Xiao ◽  
Qing Hai Luo ◽  
Gao Feng Li

The discharge of the shower wastewater is not only caused energy waste, but also caused a certain thermal pollution to the environment. The thermoelectric heat pump system, compared with the electric heating device, has a more effective output of heat energy. By recycling heat of shower wastewater, it can be both energy-saving and environmental. With a growing ratio of the energy consumption of hot water, the thermoelectric heat pump system may give us a new perspective in the area of waste heat recovery and energy efficiency in buildings.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2210
Author(s):  
Kofi Amoabeng ◽  
Jong Choi

Heat pumps are used in many applications, both in households and industries, for space air conditioning and hot water provision. The calorimeter is the equipment used in testing the heat pump system to obtain performance data. In the conventional testing mode and under standard conditions, the calorimeter utilizes a lot of energy through refrigeration and heating systems. In this study, a newly developed calorimeter with a heat recovery unit was used to test the performance of a water-to-water heat pump system. The aim was to minimize the rate of energy used in the conventional calorimeter. Two heat recovery control methods were adopted. In the control (1), the heat recovery unit was used to control the inlet water temperature setpoint for the heat pump indoor heat exchanger, whereas in control (2), the heat recovery unit was used to control the inlet water temperature setpoint for the heat pump outdoor heat exchanger. Tests were executed by varying the operating mode and test conditions. For the heating operating mode, the inlet water setpoint temperatures for the indoor and outdoor heat pump heat exchangers were 40 °C and 5 °C, respectively, whereas for the cooling mode, the inlet water setpoint temperatures for the outdoor and indoor heat pump heat exchangers were 25 °C and 12 °C, respectively. The analyses of the experimental results revealed that the energy saving of the calorimeter with heat recovery was about 71% in cooling mode and 73% in heating mode compared to the conventional calorimeter. Also, the energy consumption of the proposed calorimeter was analyzed based on the control methods. In heating mode, the calorimeter performance was enhanced when the control (2) strategy was used because the energy saving was about 8 to 13% compared to control (1). However, in the cooling mode test, it was the control (1) method that resulted in energy savings of about 6.4 to 21% compared to the control (2) method.


2015 ◽  
Vol 86 ◽  
pp. 326-332 ◽  
Author(s):  
Maolin Wei ◽  
Weixing Yuan ◽  
Zhijia Song ◽  
Lin Fu ◽  
Shigang Zhang

Sign in / Sign up

Export Citation Format

Share Document