A novel model and heat extraction capacity of mid-deep buried U-bend pipe ground heat exchangers

2021 ◽  
pp. 110723
Author(s):  
Yu Mingzhi ◽  
Lu Wei ◽  
Zhang Fangfang ◽  
Zhang Wenke ◽  
Cui Ping ◽  
...  
2012 ◽  
Vol 516-517 ◽  
pp. 395-400
Author(s):  
Zhong Yi Yu ◽  
Yan Hua Chen ◽  
Min Rui Zhou ◽  
Jian Ping Lei

This paper progresses to dynamically simulate and study the heat transfer process of horizontal ground heat exchangers in the multi-grooves by the use of numerical simulation based on the layout and heat extraction or rejection conditions of horizontal ground heat exchangers under the artificial lake. Effect of buried pipe type and groove spacing on the heat exchanger process is analyzed in detail. The influence of annual average water temperature change on the surrounding environment is evaluated with the introduction of parameters including summer weekly average maximum temperature rise and winter weekly average maximum temperature drop, in which can take the technical supports for the design of horizontal ground source heat pump system.


2021 ◽  
Vol 171 ◽  
pp. 592-605
Author(s):  
Lazaros Aresti ◽  
Paul Christodoulides ◽  
Georgios A. Florides

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2134
Author(s):  
Luka Boban ◽  
Dino Miše ◽  
Stjepan Herceg ◽  
Vladimir Soldo

With the constant increase in energy demand, using renewable energy has become a priority. Geothermal energy is a widely available, constant source of renewable energy that has shown great potential as an alternative source of energy in achieving global energy sustainability and environment protection. When exploiting geothermal energy, whether is for heating or cooling buildings or generating electricity, a ground heat exchanger (GHE) is the most important component, whose performance can be easily improved by following the latest design aspects. This article focuses on the application of different types of GHEs with attention directed to deep vertical borehole heat exchangers and direct expansion systems, which were not dealt with in detail in recent reviews. The article gives a review of the most recent advances in design aspects of GHE, namely pipe arrangement, materials, and working fluids. The influence of the main design parameters on the performance of horizontal, vertical, and shallow GHEs is discussed together with commonly used performance indicators for the evaluation of GHE. A survey of the available literature shows that thermal performance is mostly a point of interest, while hydraulic and/or economic performance is often not addressed, potentially resulting in non-optimal GHE design.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


2021 ◽  
Author(s):  
Giorgia Dalla Santa ◽  
Simonetta Cola ◽  
Antonio Galgaro

<p>In closed-loop Ground Source Heat Pump system, the circulation of a heat-carrier fluid into the heat exchanger provides the thermal exchange with the underground.</p><p>In order to improve the heat extraction from the ground, the fluid temperature is often lowered down to subzero temperatures; as a consequence, the thermal alteration induced in the ground is more intense and can cause freezing processes in the surroundings. In sediments with significant clay fraction, the inner structure and the pore size distribution are irreversibly altered by freezing-thawing cycles.</p><p>A wide laboratory program has been performed in order to measure the induced deformations and the permeability variations under different conditions of mechanical loads/depth [1], interstitial water salinity [2] and soil plasticity [3]. In addition, vertical deformations and permeability variations induced by freeze-thaw cycles have been measured also in Over-Consolidated silty clays at different OCR [4].</p><p>The results suggest that, despite the induced frozen condition is quite confined close to the borehole [5], in Normal-Consolidated silty clay layers the freezing-thawing-cycles induce an irreversible settlement up to 16%, gathered cycle-after cycle depending on sediment plasticity, pore fluid salinity and applied load. In addition, despite the overall contraction of the soil, the vertical hydraulic conductivity may increase by about 8 times due to a remarkable modification of the soil fabric with increases in pore size, pores connectivity and orientation [6].</p><p>The OC silty-clays show an opposite behavior. Experimental results point out that, in case of OC deposits, higher the OCR lower the freeze-thaw induced settlement. In case of OCR > 15, the settlement turns to a slight expansion. Conversely, the observed augment in vertical permeability increases with the OCR degree [4].</p><p>These occurrences are significant and irreversible and could affect the functionality of the system as well as lead to environmental effects such as local settlements, negative friction on the borehole heat exchangers or interconnection among aquifers in the probe surroundings.</p><ul><li>[1]. Dalla Santa G*, Galgaro A, Tateo F, Cola S (2016). Modified compressibility of cohesive sediments induced by thermal anomalies due to a borehole heat exchanger. <strong>Engineering Geology</strong> 202, 143-152.</li> <li>[2]. Dalla Santa G*, Galgaro A, Tateo F, Cola S (2016). Induced thermal compaction in cohesive sediments around a borehole heat exchanger: laboratory tests on the effect of pore water salinity. <strong>Environmental Earth Sciences</strong>, 75(3), 1-11.</li> <li>[3]. Cola S, Dalla Santa G, Galgaro A (2020). Geotechnical hazards caused by freezing-thawing processes induced by borehole heat exchangers. <strong>Lecture Notes in Civil Engineering</strong>, 40, pp. 529–536</li> <li>[4]. Dalla Santa G, Cola S, Galgaro A (2021). Deformation and Vertical Permeability Variations Induced by Freeze-Thaw Cycles in Over-Consolidated Silty Clays. <strong>Challenges and Innovations in Geomechanics</strong>, 117</li> <li>[5]. Dalla Santa G*, Farina Z, Anbergen H, Rühaak W, Galgaro A (2019). A Comparative Study on the Relevance of Computing Freeze-Thaw Effects for Borehole Heat Exchanger Modelling. <strong>Geothermics</strong> 79, 164-175.</li> <li>[6]. Dalla Santa G*, Cola S, Secco M, Tateo F, Sassi R, Galgaro A (2019). Multiscale analysis of freeze-thaw effects induced by ground heat exchangers on permeability of silty-clays. <strong>Geotechnique</strong> 2019, 69(2).</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document