Medium Dynamic Diffusion Characteristics in the Pipeline Network of Variable Flow HVAC System towards Online Decoupling Control Oriented

2022 ◽  
pp. 111827
Author(s):  
Jiaming Wang ◽  
Tianyi Zhao
2013 ◽  
Vol 807-809 ◽  
pp. 628-631
Author(s):  
Xiao Yong Peng ◽  
Xin Zhang ◽  
Shuai Huang ◽  
Xu Sheng Chai ◽  
Lan Xia Guo

with a flat ground uranium tailings impoundment as the object of the paper, CFD technology was used to study the atmospheric dynamic diffusion characteristics and the evolution of time and space distribution of radon in the uranium tailings impoundment. Results show that, within 1500m range of the leeward of uranium tailings impoundment the falling gradient of radon mass fraction improves with distance increases at the same moment, however the falling gradient flattens with the increase of time gradually; During the first 30 minutes, the radon mass fraction of tailings impoundment in the leeward direction has a larger growth gradient, then flattens out slowly, and stabilizes after 75 minutes.


Author(s):  
A. Z. A. Mazlan ◽  
M. H. A. Satar ◽  
M. H. Hamdan ◽  
M. S. Md. Isa ◽  
S. Man ◽  
...  

The automotive heating and ventilating air condition (HVAC) system, when vibrating, can generate various types of noises such as humming, hissing, clicking and air-rushes. These noises can be characterised to determine their root causes. In this study, the humming-type noise is taken into consideration whereby the noise and vibration characteristics are measured from various HVAC components such as power steering pump, compressor and air conditional pipe. Four types of measurement sensors were used in this study - tachometer for rpm tracking; accelerometer for the vibration microphone for the noise; and sound camera for the visualization measurement. Two types of operating conditions were taken into consideration - they were “idle” (850 rpm) and “running” (850-1400 rpm) conditions. A constant blower speed was applied for both conditions. The result shows that the humming noises can be determined at the frequency range of 300-350 Hz and 150-250 Hz for both idle and running conditions, respectively. The vibration of the power steering pump shows the worst acceleration of 1.8 m/s2 at the frequency range of 150-250 Hz, compared to the compressor and air conditional pipe. This result was validated with the 3D colour order and sound camera analyses, in which the humming noise colour mapping shows dominance in this frequency range.  


Sign in / Sign up

Export Citation Format

Share Document