Simulation of solar lithium bromide–water absorption cooling system with parabolic trough collector

2008 ◽  
Vol 49 (10) ◽  
pp. 2820-2832 ◽  
Author(s):  
M. Mazloumi ◽  
M. Naghashzadegan ◽  
K. Javaherdeh
2018 ◽  
Vol 8 (11) ◽  
pp. 2163 ◽  
Author(s):  
Yuridiana Galindo Luna ◽  
Wilfrido Gómez Franco ◽  
Ulises Dehesa Carrasco ◽  
Rosenberg Romero Domínguez ◽  
José Jiménez García

The present study reports the experimental results of a parabolic trough collector field and an absorption cooling system with a nominal capacity of 5 kW, which operates with the ammonia-lithium nitrate mixture. The parabolic trough collectors’ field consists of 15 collectors that are made of aluminum plate in the reflector surface and cooper in the absorber tube, with a total area of 38.4 m2. The absorption cooling system consists of 5 plate heat exchangers working as the main components. Parametric analyses were carried out to evaluate the performance of both systems under different operating conditions, in independent way. The results showed that the solar collectors’ field can provide up to 6.5 kW of useful heat to the absorption cooling system at temperatures up to 105 °C with thermal efficiencies up to 19.8% and exergy efficiencies up to 14.93, while the cooling system operated at generation temperatures from 85–95 °C and condensation temperatures between 20 and 28 °C, achieving external coefficients of performance up to 0.56, cooling temperatures as low as 6 °C, and exergy efficiencies up to 0.13. The highest value for the solar coefficient of performance reached 0.07.


2017 ◽  
Vol 151 ◽  
pp. 60-73 ◽  
Author(s):  
Esa Dube Kerme ◽  
Achmad Chafidz ◽  
O. Philips Agboola ◽  
Jamel Orfi ◽  
Anis H. Fakeeha ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Doniazed Sioud ◽  
Raoudha Garma ◽  
Ahmed Bellagi

The objective of this paper is to investigate theoretically a solar driven 60 kW absorption cooling system. The system is constituted of a combined ejector single-effect absorption cycle coupled with a linear Fresnel solar concentrator and using water/lithium bromide as working fluid. The combined ejector single-effect absorption cycle exhibits high performances, almost equal to that of double-effect absorption device. However, higher driving heat temperatures are required than in the case of conventional single-effect machines. A mathematical model is set up to analyze the optical performance of the linear Fresnel concentrator. Simulations are carried out to study the overall system performance COPsystem and the performances of the combined absorption machine COPcycle for generator driving temperatures and pressures in the ranges 180°C – 210°C and 198 kPa – 270 kPa, respectively. Further, the effect of operating parameters such as the cooling medium and chilled water temperatures is investigated. A maximum cycle performance of 1.03 is found for a generator pressure of 272 kPa and chilled and cooling water temperatures of 7°C and 25°C, respectively. A case study is investigated for a typical summer Tunisian day, from 8:00 to 18:00. The effect of ambient temperature and solar radiation on cycle and system performances is simulated. The optical performances of the concentrator are also analyzed. Simulation results show that between 11:00 and 14:00 the collector efficiency is 0.61 and that the COPcycle reaches values always higher than 0.9 and the COPsystem is larger than 0.55. Globally the performances of the investigated cycle are similar to those of double-effect conventional absorption system.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2679 ◽  
Author(s):  
Jiangjiang Wang ◽  
Rujing Yan ◽  
Zhuang Wang ◽  
Xutao Zhang ◽  
Guohua Shi

Solar radiation intensity significantly influences the cooling loads of building, and the two are correlated and accorded to a certain extent. This study proposes a double effect LiBr–H2O absorption cooling system based on the parabolic trough collector (PTC) of solar heat energy. Thermodynamic models including PTC and absorption chiller are constructed, and their accuracy is verified by comparing the simulation results and the experimental data. Subsequently, the impact of variable design parameters on the thermodynamic performance is analyzed and discussed. The analysis of a solar cooling system in a hotel case study is related to its operation in a typical day, the average coefficient of performance of the absorption chiller is approximately 1.195, and the whole solar cooling system achieves 61.98% solar energy utilization efficiency. Furthermore, the performance comparison of a solar cooling system in different types of building indicates that higher matching and a higher correlation coefficient between the transient solar direct normal irradiance and cooling load is helpful in decreasing the heat loss and improving systemic performance. The solar cooling system in the office building exhibits a correlation coefficient of approximately 0.81 and achieves 69.47% systemic thermal efficiency.


Sign in / Sign up

Export Citation Format

Share Document