absorption cycle
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6052
Author(s):  
Hamza Ayaz ◽  
Veerakumar Chinnasamy ◽  
Junhyeok Yong ◽  
Honghyun Cho

Sorption thermochemical storage systems can store thermal energy for the long-term with minimum amount of losses. Their flexibility in working with sustainable energy sources further increases their importance vis-à-vis high levels of pollution from carbon-based energy forms. These storage systems can be utilized for cooling and heating purposes or shifting the peak load. This review provides a basic understanding of the technologies and critical factors involved in the performance of thermal energy storage (TES) systems. It is divided into four sections, namely materials for different sorption storage systems, recent advances in the absorption cycle, system configuration, and some prototypes and systems developed for sorption heat storage systems. Energy storage materials play a vital role in the system design, owing to their thermal and chemical properties. Materials for sorption storage systems are discussed in detail, with a new class of absorption materials, namely ionic liquids. It can be a potential candidate for thermal energy storage due to its substantial thermophysical properties which have not been utilized much. Recent developments in the absorption cycle and integration of the same within the storage systems are summarized. In addition, open and closed systems are discussed in the context of recent reactor designs and their critical issues. Finally, the last section summarizes some prototypes developed for sorption heat storage systems.


Author(s):  
CP Jawahar

This paper presents the energy analysis of a triple effect absorption compression (hybrid) cycle employing ammonia water as working fluid. The performance parameters such as cooling capacity and coefficient of performance of the hybrid cycle is analyzed by varying the temperature of evaporator from −10 °C to 10 °C, absorber and condenser temperatures in first stage from 25 °C to 45 °C, degassing width in both the stages from 0.02 to 0.12 and is compared with the conventional triple effect absorption cycle. The results of the analysis show that the maximum cooling capacity attained in the hybrid cycle is 472.3 kW, at 10 °C evaporator temperature and first stage degassing width of 0.12. The coefficient of performance of the hybrid cycle is about 30 to 65% more than the coefficient of performance of conventional triple effect cycle.


2021 ◽  
Vol 1051 (1) ◽  
pp. 012049
Author(s):  
W N Yong ◽  
K J Hong ◽  
P Y Liew ◽  
T G Walmsley

2021 ◽  
Vol 312 ◽  
pp. 08018
Author(s):  
Simone Braccio ◽  
Hai Trieu Phan ◽  
Nicolas Tauveron ◽  
Nolwenn Le Pierrès

The present work is focused on the investigation of an absorption cycle integrated with an impulse axial turbine for the combined production of cooling and electric power. This technology holds great promise for its ability to harness low-temperature heat sources, more effciently in comparison to separate production with simple cycles. By developing a 1D model of the expander, and integrating it into a 0D model of the complete cycle, it is possible to evaluate the performance of the cycle and its variation with respect to the operating parameters, namely the temperature of the external resources. Pending an experimental validation of the results, this study showed the importance of correctly defining the temperature of the sources - namely the generator temperature - in order to satisfy the technological needs while also maximising the effciency of the cycle. Finally it was highlighted how the integration of a supersonic impulse turbine strongly limits the flexibility during operation given the constant mass flow rate treated by the expander.


2020 ◽  
Vol 6 ◽  
pp. 1992-2005 ◽  
Author(s):  
Fidelis I. Abam ◽  
Tobinson. A. Briggs ◽  
Ogheneruona E. Diemuodeke ◽  
Ekwe B. Ekwe ◽  
Keneth N. Ujoatuonu ◽  
...  

AIChE Journal ◽  
2020 ◽  
Author(s):  
Jiaming Xu ◽  
Aaron M. Scurto ◽  
Mark B. Shiflett ◽  
Steven R. Lustig ◽  
Francisco R. Hung

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 816
Author(s):  
JV Herrera-Romero ◽  
Dario Colorado-Garrido

This research presents a comprehensive bibliographic review from 2006 through 2020 about the state of the art of the compression–absorption cascade systems for refrigeration. In consequence of this review, this research identifies the significant development of systems that consider lithium bromide as a working fluid; however, the use of other working fluids has not been developed. This study is motivated toward the development of a parametric analysis of the cascade system using NH3-LiNO3, NH3-NaSCN and NH3-H2O in the absorption cycle and R134a in the compression cycle. In this study, the effect of the heat source temperature, condensation temperature in the compression cycle, the use of heat exchangers in the system (also known as economizers) and their contribution to the coefficient of performance is deepened numerically. The economizers evaluated are the following: an internal heat exchanger, a refrigerant heat exchanger, a solution refrigerant heat exchanger, and a solution heat exchanger. Mass and energy balance equations—appropriate equations to estimate the thermophysical properties of several refrigerant–absorbent pairs—were used to develop a thermodynamic model. The studied heat source temperature range was from 355 to 380 K, and the studied condensation temperature range in the compression cycle was from 281 to –291 K; additionally, the importance of each economizer on the coefficient of performance was numerically estimated. In this way, NH3-NaSCN solution in the absorption cycle and R134a in the compression cycle provided promising numerical results with the highest COPs (coefficient of performance).


Sign in / Sign up

Export Citation Format

Share Document