A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

2009 ◽  
Vol 50 (2) ◽  
pp. 393-398 ◽  
Author(s):  
A-F.M. Mahrous ◽  
A. Potrzebowski ◽  
M.L. Wyszynski ◽  
H.M. Xu ◽  
A. Tsolakis ◽  
...  
2021 ◽  
pp. 146808742110368
Author(s):  
Akihiro Takeshita ◽  
Yudai Yamasaki ◽  
Mitsuhiro Muto ◽  
Takayuki Hikita ◽  
Takuma Fujii ◽  
...  

The purpose of this study is to develop a model for the gas exchange process in a rebreathing homogeneous charge compression ignition (HCCI) engine. HCCI engines are attracting significant attention due to their low emissions and high efficiency. To design the control system of an HCCI engine, it is necessary to develop a control-oriented engine model. The developed model lowers its computational load by combining two types of models. The model consists of a discrete model for the exhaust process (the first half of the gas exchange process) and a continuous model with a variable calculation step size for the rebreathing process (the latter half of the gas exchange process). Also, the constructed model maintained its prediction accuracy, as the pressure pulsation in the exhaust port was modeled, and an unsteady flow equation was used. It was confirmed that the model developed for the gas exchange process calculated in about half time of one cycle and reproduced the results of 1D engine simulation software with a maximum error of about 10% in the in-cylinder pressure, temperature, and trapped mass.


2018 ◽  
Vol 21 (3) ◽  
pp. 421-436 ◽  
Author(s):  
David Gordon ◽  
Christian Wouters ◽  
Maximilian Wick ◽  
Feihong Xia ◽  
Bastian Lehrheuer ◽  
...  

Homogeneous charge compression ignition has the potential to significantly reduce NO x emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air–fuel mixture. Combustion timing is highly dependent on the in-cylinder state including pressure, temperature and trapped mass. To control homogeneous charge compression ignition combustion, it is necessary to have an accurate representation of the gas exchange process. Currently, microprocessor-based engine control units require that the gas exchange process is linearized around a desired operating point to simplify the model for real-time implementation. This reduces the models’ ability to handle disturbances and limits the flexibility of the model. However, using a field programmable gate array, a detailed simulation of the physical gas exchange process can be implemented in real time. This paper outlines the process of converting physical governing equations to an offline zero-dimensional gas exchange model. The process used to convert this model to a field programmable gate array capable model is described. This model is experimentally validated using a single cylinder research engine with electromagnetic valves to record real-time field programmable gate array gas exchange results and comparing to the offline zero-dimensional physical model. The field programmable gate array model is able to accurately calculate the cylinder temperature and cylinder mass at 0.1 °CA intervals during the gas exchange process for a range of negative valve overlaps, boost conditions and engine speeds making the model useful for future real-time control applications.


Author(s):  
Jason S. Souder ◽  
Parag Mehresh ◽  
J. Karl Hedrick ◽  
Robert W. Dibble

Homogeneous charge compression ignition (HCCI) engines are a promising engine technology due to their low emissions and high efficiencies. Controlling the combustion timing is one of the significant challenges to practical HCCI engine implementations. In a spark-ignited engine, the combustion timing is controlled by the spark timing. In a Diesel engine, the timing of the direct fuel injection controls the combustion timing. HCCI engines lack such direct in-cylinder mechanisms. Many actuation methods for affecting the combustion timing have been proposed. These include intake air heating, variable valve timing, variable compression ratios, and exhaust throttling. On a multi-cylinder engine, the combustion timing may have to be adjusted on each cylinder independently. However, the cylinders are coupled through the intake and exhaust manifolds. For some of the proposed actuation methods, affecting the combustion timing on one cylinder influences the combustion timing of the other cylinders. In order to implement one of these actuation methods on a multi-cylinder engine, the engine controller must account for the cylinder-to-cylinder coupling effects. A multi-cylinder HCCI engine model for use in the control design process is presented. The model is comprehensive enough to capture the cylinder-to-cylinder coupling effects, yet simple enough for the rapid simulations required by the control design process. Although the model could be used for controller synthesis, the model is most useful as a starting point for generating a reduced-order model, or as a plant model for evaluating potential controllers. Specifically, the model includes the dynamics for affecting the combustion timing through exhaust throttling. The model is readily applicable to many of the other actuation methods, such as variable valve timing. Experimental results validating the model are also presented.


2009 ◽  
Vol 12 (14) ◽  
pp. 77-85
Author(s):  
Cong Thanh Huynh ◽  
Kang Joon-Kyoung ◽  
Noh Ki-Cholo ◽  
Lee Jong-Tai ◽  
Mai Xuan Pham

The development of a hydrogen-fueled engine using an external mixture (e.g., using port injection) with high efficiency and high power is dependent on the control of backfire. This work has developed a method to control backfire by reducing the valve overlap period. For this goal, a single-cylinder hydrogen-fueled research engine with a mechanical continuous variable valve timing (MCVVT) system was developed. This facility provides a wide range of valve overlap periods that can be continuously and independently varied during firing operation. In experiments, the behavior of backfire occurrence and engine performance are determined as functions of the valve overlap period for fuel-air equivalence ratios between 0.25 and 1.2. The results showed that the research engine with the MCVVT system has similar performance to a conventional engine, and is especially effective in controlling the valve overlap period. The obtained results demonstrate that decreasing the valve overlap period may be one of the methods for controlling backfire in a H engine. Also, a method for compensating performance loss due to shortened valve overlap period is recommended.


2008 ◽  
Author(s):  
Abdel-Fattah M. Mahrous ◽  
Adam Potrzebowski ◽  
Miroslaw L. Wyszynski ◽  
Hongming Xu ◽  
Athanasios Tsolakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document