scholarly journals Wind power merit-order and feed-in-tariffs effect: A variability analysis of the Spanish electricity market

2014 ◽  
Vol 83 ◽  
pp. 19-27 ◽  
Author(s):  
D. Azofra ◽  
E. Jiménez ◽  
E. Martínez ◽  
J. Blanco ◽  
J.C. Saenz-Díez
Author(s):  
Sumit Saroha ◽  
Sanjeev K. Aggarwal

Objective: The estimation accuracy of wind power is an important subject of concern for reliable grid operations and taking part in open access. So, with an objective to improve the wind power forecasting accuracy. Methods: This article presents Wavelet Transform (WT) based General Regression Neural Network (GRNN) with statistical time series input selection technique. Results: The results of the proposed model are compared with four different models namely naïve benchmark model, feed forward neural networks, recurrent neural networks and GRNN on the basis of Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) performance metric. Conclusion: The historical data used by the presented models has been collected from the Ontario Electricity Market for the year 2011 to 2015 and tested for a long time period of more than two years (28 months) from November 2012 to February 2015 with one month estimation moving window.


2021 ◽  
Vol 11 (10) ◽  
pp. 4438
Author(s):  
Satyendra Singh ◽  
Manoj Fozdar ◽  
Hasmat Malik ◽  
Maria del Valle Fernández Moreno ◽  
Fausto Pedro García Márquez

It is expected that large-scale producers of wind energy will become dominant players in the future electricity market. However, wind power output is irregular in nature and it is subjected to numerous fluctuations. Due to the effect on the production of wind power, producing a detailed bidding strategy is becoming more complicated in the industry. Therefore, in view of these uncertainties, a competitive bidding approach in a pool-based day-ahead energy marketplace is formulated in this paper for traditional generation with wind power utilities. The profit of the generating utility is optimized by the modified gravitational search algorithm, and the Weibull distribution function is employed to represent the stochastic properties of wind speed profile. The method proposed is being investigated and simplified for the IEEE-30 and IEEE-57 frameworks. The results were compared with the results obtained with other optimization methods to validate the approach.


2021 ◽  
Vol 201 ◽  
pp. 107513
Author(s):  
Xian Wang ◽  
Huajun Zhang ◽  
Shaohua Zhang ◽  
Lei Wu

2016 ◽  
Vol 41 (46) ◽  
pp. 21057-21066 ◽  
Author(s):  
Stephen Carr ◽  
Fan Zhang ◽  
Feng Liu ◽  
Zhaolong Du ◽  
Jon Maddy

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2873 ◽  
Author(s):  
Dinh Thanh Viet ◽  
Vo Van Phuong ◽  
Minh Quan Duong ◽  
Quoc Tuan Tran

As sources of conventional energy are alarmingly being depleted, leveraging renewable energy sources, especially wind power, has been increasingly important in the electricity market to meet growing global demands for energy. However, the uncertainty in weather factors can cause large errors in wind power forecasts, raising the cost of power reservation in the power system and significantly impacting ancillary services in the electricity market. In pursuance of a higher accuracy level in wind power forecasting, this paper proposes a double-optimization approach to developing a tool for forecasting wind power generation output in the short term, using two novel models that combine an artificial neural network with the particle swarm optimization algorithm and genetic algorithm. In these models, a first particle swarm optimization algorithm is used to adjust the neural network parameters to improve accuracy. Next, the genetic algorithm or another particle swarm optimization is applied to adjust the parameters of the first particle swarm optimization algorithm to enhance the accuracy of the forecasting results. The models were tested with actual data collected from the Tuy Phong wind power plant in Binh Thuan Province, Vietnam. The testing showed improved accuracy and that this model can be widely implemented at other wind farms.


Author(s):  
Zehra Yumurtacı ◽  
A. Yasin Demirhan ◽  
Yüksel Malkoç

Sign in / Sign up

Export Citation Format

Share Document