Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel

2015 ◽  
Vol 105 ◽  
pp. 498-508 ◽  
Author(s):  
Samad Jafarmadar ◽  
Peyman Nemati ◽  
Rana Khodaie
Author(s):  
Jeffrey Mohr ◽  
Bret Windom ◽  
Daniel B. Olsen ◽  
Anthony J. Marchese

Abstract To evaluate the effect of exhaust gas recirculation (EGR) and variable fuel reactivity on knock and misfire in spark ignited national gas engines, experiments were conducted in a rapid compression machine to measure homogeneous ignition delay, flame propagation rate, and end-gas autoignition fraction for stoichiometric natural gas/oxidizer/EGR blends. Natural gas with a range of chemical reactivity was simulated using mixtures of CH4, C2H6, and C3H8. Reactive exhaust gas recirculation (R-EGR) gases were simulated with mixtures of Ar, CO2, CO, and NO and non-reactive exhaust gas recirculation gases (NR-EGR) were simulated with mixtures of AR and CO2. Homogeneous ignition delay period, flame propagation rate and end-gas autoignition fraction were measured at compressed pressures and temperatures of 30.2 to 34.0 bar and 667 to 980 K, respectively. Flame propagation rate decreased with both R-EGR and NR-EGR substitution. The substitution of R-EGR increased the end-gas autoignition fraction, whereas NR-EGR substitution decreased the end-gas autoignition fraction. The results indicate that the presence of the reactive species NO in the R-EGR has a strong impact on end-gas autoignition fraction. An 82-species reduced chemical kinetic mechanism was also developed that reproduces measured homogeneous ignition delay period with a total average relative error of 11.0%.


Author(s):  
S. Allenby ◽  
W-C. Chang ◽  
A. Megaritis ◽  
M. L. Wyszyński

An experimental study was carried out to evaluate the potential of hydrogen enrichment to increase the tolerance of a stoichiometrically fuelled natural gas engine to high levels of dilution by exhaust gas recirculation (EGR). This provides significant gains in terms of exhaust emissions without the rapid reduction in combustion stability typically seen when applying EGR to a methane-fuelled engine. Presented results give the envelope of benefits from hydrogen enrichment. In parallel, the performance of a catalytic exhaust gas reforming reactor was investigated in order that it could be used as an onboard source of hydrogen-rich EGR. It was shown that sufficient hydrogen was generated with currently available prototype catalysts to allow the engine, at the operating points considered, to tolerate up to 25 per cent EGR, while maintaining a coefficient of variability of indicated mean effective pressure below 5 per cent. This level of EGR gives a reduction in NO emissions greater than 80 per cent in all test cases.


Author(s):  
Sundar Lal ◽  
Devendra Singh ◽  
Ajay Kumar Sharma

The primary aim of the present experiment is to study the productivity, emission behavior of the HCCI engine using exhaust gas recirculation at different flow rates under different load conditions on the controlled combustion of the HCCI diesel-fueled engine, to know the best performance and least emissions attainable and to further investigate the impact of the engine. Experiments have been performed for various percentages of exhaust gas recirculation with diesel fuel under load variations. These analyses of the EGR at varying load with the findings acquired are plotted and contrasted for the output and emission characteristics that have been carried out in order to identify the efficient operation of the diesel engine with the least environmental pollution.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012065
Author(s):  
I I Libkind ◽  
A V Gonturev

Abstract When converting diesel engines to run on natural gas on the gas-diesel cycle, additional problems arise associated with the high thermal stress of the exhaust valves and valve seats at high loads and engine speeds. There is also an increase in NOx emissions due to higher combustion temperatures of natural gas. One of the ways to improve the economic and environmental performance of engines operating on a gas-diesel cycle with a lean air-fuel mixture is to optimize the combustion of the air-fuel mixture by using an exhaust gas recirculation system (EGR). The principle of operation of this system is as follows: exhaust gas entering the intake manifold and further into the combustion chamber reduces the oxygen concentration in the air-fuel mixture, which leads to a dilution effect and, accordingly, to a decrease in combustion temperature and a decrease in NOx content. In order to study the influence of EGR on the dual-fuel gas and diesel engine parameters in the AVL Boost software package, a computer model of the existing 6ChN13/15 engine was developed. A low-pressure EGR system with an exhaust gas cooler was simulated on this engine. Values of NOx emissions, brake specific fuel consumption (BSFC) and brake efficiency have been obtained at different recirculation rate by calculation method. These values allow to estimate the feasibility of using a cooled EGR in a natural gas-fueled diesel engine.


Sign in / Sign up

Export Citation Format

Share Document