Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

2015 ◽  
Vol 106 ◽  
pp. 703-708 ◽  
Author(s):  
Qiang Wang ◽  
Longhua Hu ◽  
Xiaozheng Zhang ◽  
Xiaolei Zhang ◽  
Shouxiang Lu ◽  
...  
2020 ◽  
Vol 1008 ◽  
pp. 128-138
Author(s):  
Ahmed M. Salman ◽  
Ibrahim A. Ibrahim ◽  
Hamada M. Gad ◽  
Tharwat M. Farag

In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteristics were represented as axial and radial temperatures distributions, temperatures gradient, visible flame length and species concentrations. The results indicated that as the air temperature increased, the chemical reaction rate increased and flame volume decreased, the combustion time reduced leading to a reduction in flame length. The NO concentration reaches its maximum values near the location of the maximum centerline axial temperature. Increasing the combustion air temperature by 200 K, the NO consequently O2 concentrations are increased by about % 355 and 20 % respectively, while CO2 and CO concentrations are decreased by about % 21 and 99 % respectively, at the combustor end.


2007 ◽  
Vol 2007.56 (0) ◽  
pp. 189-190
Author(s):  
Shunya KOBAYASHI ◽  
Youji HORII ◽  
Yuzuru NADA ◽  
Susumu NODA

Author(s):  
Alan S. Feitelberg ◽  
Michael D. Starkey ◽  
Richard B. Schiefer ◽  
Roointon E. Pavri ◽  
Matt Bender ◽  
...  

This paper describes a reduced NOx diffusion flame combustor that has been developed for the MS5002 gas turbine. Laboratory tests have shown that when firing with natural gas, without water or steam injection, NOx emissions from the new combustor are about 40% lower than NOx emissions from the standard MS5002 combustor. CO emissions are virtually unchanged at base load, but increase at part load conditions. The laboratory results were confirmed in 1997 by a commercial demonstration test at a British Petroleum site in Prudhoe Bay, Alaska. The standard MS5002 gas turbine is equipped with a conventional, swirl stabilized diffusion flame combustion system. The twelve standard combustors in an MS5002 turbine are cylindrical cans, approximately 27 cm (10.5 inches) in diameter and 112 cm (44 inches) long. A small, annular, vortex generator surrounds the single fuel nozzle that is centered at the inlet to each can. The walls of the cans are louvered for cooling, and contain an array of mixing and dilution holes that provide the air needed to complete combustion and dilute the burned gas to the desired turbine inlet temperature. The new, reduced NOx emissions combustor (referred to as a “lean head end”, or LHE, combustor) retains all of the key features of the conventional combustor: the only significant difference is the arrangement of the mixing and dilution holes in the cylindrical combustor can. By optimizing the number, diameter, and location of these holes, NOx emissions were substantially reduced. The materials of construction, fuel nozzle, and total combustor air flow were unchanged. The differences in NOx emissions between the standard and LHE combustors, as well as the variations in NOx emissions with firing temperature, were well correlated using turbulent flame length arguments. Details of this correlation are also presented.


1979 ◽  
Vol 6 (7-8) ◽  
pp. 1009-1010 ◽  
Author(s):  
T. Takeno ◽  
Y. Kotani

Author(s):  
M. A. Simon ◽  
B. D. Baird ◽  
S. R. Gollahalli

This study was an investigation of the characteristics of a horizontal laminar diffusion flame established from a tubular burner in a buoyant vertical flow vitiated with combustion products created by a flat flame. The effects of varying flat flame equivalence ratio on these characteristics were studied. Applications of this study include exhaust gas recirculation (EGR), staged combustion in furnaces, and afterburners in jet engines. The fuel used for both the horizontal (cross-flow flame) and the flat flame in this study was propane. For a range of flat flame burner equivalence ratio (0.6 to 0.9), measurements of cross-flow flame length, and global emissions of NO were made. The mass flow rate of propane delivered to the cross-flow flame was held constant during these measurements. The flames were photographed with a digital camera. Profiles of combustion species concentrations and temperature were taken at 25% and 50% of the cross-flow flame length for flat flame burner equivalence ratios of 0.6 and 0.8, and for a non-combustion case (air flow only) in the flat flame. It was found that increasing the flat flame burner equivalence ratio caused an increase in the length of the cross-flow flame. The maximum temperature of the cross-flow flame decreased with increasing flat flame burner equivalence ratio. The introduction of the cross-flow flame increased the NO production in a flat flame with an equivalence ratio of 0.6, but did not significantly affect the NO production in a flat flame of an equivalence ratios of 0.7 or 0.8, and reduced it (by as much as 25%) in a flat flame of equivalence ratio of 0.9. This reduction of NO production and flame temperature and increase in flame length with increasing flat flame equivalence ratio was attributed to the reduction of oxygen available to the cross-flow flame. These results were supported with the in-flame combustion species concentration profiles.


Sign in / Sign up

Export Citation Format

Share Document