Energy, exergy, exergoeconomic, and economic analysis of a novel power generation cycle integrated with seawater desalination system using the cold energy of liquified natural gas

2021 ◽  
Vol 243 ◽  
pp. 114352
Author(s):  
Amirsaman Eghtesad ◽  
Hossein Afshin ◽  
Siamak Kazemzadeh Hannani
Author(s):  
Hamid Mahdavi ◽  
Mosa Meratizaman ◽  
S. Ali Jazayeri

The objectives of this paper are to develop a combined power generation cycle using refuse incineration and LNG cold energy, and to conduct parametric analysis to investigate the effects of key parameters on the thermal and exergy efficiencies. The combined cycle consists of an ammonia–water Rankine cycle with refuse incinerator and a LNG cold energy cycle with use of regasified LNG as the extra fuel in the incinerator. The combined cycle is compared with the conventional steam Rankine cycle.


Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 120134
Author(s):  
Cai Cheng ◽  
Jacob Cherian ◽  
Muhammad Safdar Sial ◽  
Umer Zaman ◽  
Hosein Niroumandi

Author(s):  
S. Ehsan Shakib ◽  
Majid Amidpour ◽  
Cyrus Aghanajafi

Most of the potable water and electricity are produced by dual purpose plants. Dual-purpose plants are the one that supplies heat for a thermal desalination unit and produces electricity for distribution to the electrical grid. In this paper a power plant is combined with a multi-effect evaporation thermal vapor compression (METVC) system. Compared with the most widely used (Multi Stage Flash) MSF desalination, METVC has more advantages. Then, energy and exergy analysis equations for desalination plant, power generation cycle, heat recovery steam generator and combined power and water cycle are developed and the results are presented. Results show by rising number of effect from 2 to 14, performance ratio, exergy efficiency and specific heat transfer area rise steadily. For combined system, the maximum and minimum values of exergy destruction rate are related to combustion chamber and desalination effects, respectively. Also, with increasing TIT, exergy destruction rate of power generation cycle decreases while the exergy destruction rate of METVC, especially thermo compressor, goes up and fresh water production reduces dramatically.


2020 ◽  
Vol 5 (3) ◽  
pp. 321-333
Author(s):  
V. V. Rao ◽  
Zulfan Adi Putra ◽  
M. R. Bilad ◽  
M. D. H. Wirzal ◽  
N. A. H. M. Nordin ◽  
...  

Natural gas is conventionally transported in its liquid form or Liquid Natural Gas (LNG). It is then transported using cryogenic insulated LNG tankers. At receiving terminals, LNG is regasified prior to distributing it through gas distribution system. Seawater has been used as the heat source, which leads to vast amount of cold energy discarded into the water. This work presents the use of LNG cold energy around Melaka Refining Company (MRC). The cold energy is utilized in power generation, propylene refrigeration cycle, and air separation plants. These systems are designed and simulated using a commercial process simulation software. Capital cost (CAPEX) function and revenues of each system are further developed as a function of LNG flowrates. These developed correlations are then used in an optimization problem to seek for the most profitable scenario. The results show that utilizing LNG for air separation unit yields the highest profit compared to power generation and refrigeration plants.


Sign in / Sign up

Export Citation Format

Share Document