Household energy mix in Uganda

2013 ◽  
Vol 39 ◽  
pp. 252-261 ◽  
Author(s):  
Lisa Yu-Ting Lee
Keyword(s):  
2010 ◽  
Vol 21 (8) ◽  
pp. 937-952 ◽  
Author(s):  
Abiodun S. Momodu ◽  
John-Felix K. Akinbami ◽  
Isaac O. Akinwunmi

2009 ◽  
Vol 6 (1) ◽  
pp. 23-43
Author(s):  
I O Akinwumi ◽  
I B Obioh ◽  
A S Momodu ◽  
J-F K Akinbami

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 878 ◽  
Author(s):  
Oliwia Pietrzak ◽  
Krystian Pietrzak

This paper focuses on effects of implementing zero-emission buses in public transport fleets in urban areas in the context of electromobility assumptions. It fills the literature gap in the area of research on the impact of the energy mix of a given country on the issues raised in this article. The main purpose of this paper is to identify and analyse economic effects of implementing zero-emission buses in public transport in cities. The research area was the city of Szczecin, Poland. The research study was completed using the following research methods: literature review, document analysis (legal acts and internal documents), case study, ratio analysis, and comparative analysis of selected variants (investment variant and base variant). The conducted research study has shown that economic benefits resulting from implementing zero-emission buses in an urban transport fleet are limited by the current energy mix structure of the given country. An unfavourable energy mix may lead to increased emissions of SO2 and CO2 resulting from operation of this kind of vehicle. Therefore, achieving full effects in the field of electromobility in the given country depends on taking concurrent actions in order to diversify the power generation sources, and in particular on increasing the share of Renewable Energy Sources (RES).


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Martin Pullinger ◽  
Jonathan Kilgour ◽  
Nigel Goddard ◽  
Niklas Berliner ◽  
Lynda Webb ◽  
...  

AbstractThe IDEAL household energy dataset described here comprises electricity, gas and contextual data from 255 UK homes over a 23-month period ending in June 2018, with a mean participation duration of 286 days. Sensors gathered 1-second electricity data, pulse-level gas data, 12-second temperature, humidity and light data for each room, and 12-second temperature data from boiler pipes for central heating and hot water. 39 homes also included plug-level monitoring of selected electrical appliances, real-power measurement of mains electricity and key sub-circuits, and more detailed temperature monitoring of gas- and heat-using equipment, including radiators and taps. Survey data included occupant demographics, values, attitudes and self-reported energy awareness, household income, energy tariffs, and building, room and appliance characteristics. Linked secondary data comprises weather and level of urbanisation. The data is provided in comma-separated format with a custom-built API to facilitate usage, and has been cleaned and documented. The data has a wide range of applications, including investigating energy demand patterns and drivers, modelling building performance, and undertaking Non-Intrusive Load Monitoring research.


Sign in / Sign up

Export Citation Format

Share Document