Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors

Energy ◽  
2016 ◽  
Vol 99 ◽  
pp. 10-19 ◽  
Author(s):  
Ning Zhang ◽  
Bing Wang ◽  
Zhu Liu
Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1264
Author(s):  
Meng Zeng ◽  
Lihang Liu ◽  
Fangyi Zhou ◽  
Yigui Xiao

Many studies have found that FDI can reduce the pollutant emissions of host countries. At the same time, the intensity of environmental regulation would affect the emission reduction effect of FDI in the host country. This study aims to reveal the internal mechanisms of this effect. Specifically, this paper studies the impact of FDI on technological innovation in China’s industrial sectors from the perspective of technology transactions from 2001 to 2019, and then analyzes whether the intensity of environmental regulation can promote the relationship. Results indicate that FDI promotes technological innovation through technology transactions. In addition, it finds that the intensity of environmental regulation significantly positively moderates the relationship between FDI and technological innovation, which is achieved by positively moderating the FDI–technology transaction relationship. Regional heterogeneity analysis is further conducted, and results show that in the eastern and western regions of China, FDI can stimulate technological innovation within regional industrial sectors through technology trading. Moreover, environmental regulation has a significant positive regulatory effect on the above relationship, but these effects are not supported by evidence in the central region of China.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Guoxing Zhang ◽  
Mingxing Liu

Based on 2002–2010 comparable price input-output tables, this paper first calculates the carbon emissions of China’s industrial sectors with three components by input-output subsystems; next, we decompose the three components into effect of carbon emission intensity, effect of social technology, and effect of final demand separately by structure decomposition analysis; at last, we analyze the contribution of every effect to the total emissions by sectors, thus finding the key sectors and key factors which induce the changes of carbon emissions in China’s industrial sectors. Our results show that in the latest 8 years five departments have gotten the greatest increase in the changes of carbon emissions compare with other departments and the effect of final demand is the key factor leading to the increase of industrial total carbon emissions. The decomposed effects show a decrease in carbon emission due to the changes of carbon emission intensity between 2002 and 2010 compensated by an increase in carbon emissions caused by the rise in final demand of industrial sectors. And social technological changes on the reduction of carbon emissions did not play a very good effect and need further improvement.


2018 ◽  
Vol 194 ◽  
pp. 179-192 ◽  
Author(s):  
Shiwei Yu ◽  
Xing Hu ◽  
Jing-li Fan ◽  
Jinhua Cheng

2018 ◽  
Vol 10 (8) ◽  
pp. 2711 ◽  
Author(s):  
Sinwoo Lee ◽  
Dong-Woon Noh ◽  
Dong-hyun Oh

This study measures and decomposes green productivity growth of Korean manufacturing industries between 2004 and 2010 using the Malmquist-Luenberger productivity index. We focus on differences in the measures of productivity growth by distinguishing carbon emissions from either end-user industries or the electricity generation industry. Empirical results suggest three main findings. First, the efficiency of total emissions is higher than that of direct emissions except for the shipbuilding industry. Second, green productivity in the manufacturing sector increased during the study period. Finally, green productivity depends on the indirect emissions of each industry. These results indicate that policymakers need to deliberately develop policy tools for mitigating carbon emissions of the manufacturing industrial sectors based on our empirical findings.


2021 ◽  
Vol 7 (5) ◽  
pp. 2422-2444
Author(s):  
Song Teng ◽  
Liu Yuxin

Objectives: As the world’s largest tobacco producer and seller, China’s rapid development of the tobacco industry is inextricably linked to the promotion and support of the manufacturing industry. The optimization and adjustment of the manufacturing structure (MS) is critical in determining the competitiveness of the manufacturing industry. This study examines the impact of technological innovation and market size on MS optimization in China using provincial data from 2001 to 2016. We obtain the following main results. First, market size and technological innovation are important drivers in optimizing MS. Technological innovation increases productivity and results in the redistribution of production factors across industrial sectors, altering the industrial structure. The market size facilitates labor division, which boosts productivity. Second, institutional innovation is critical for optimizing MS. It strengthens the impact of technological innovation and market size on MS rationalization. Furthermore, the study’s findings are robust to a variety of estimation techniques, several alternative proxies for core explanatory variables, and a long list of control variables. An important implication of the study’s findings is that the Chinese government should implement effective institutional reforms to accelerate China’s manufacturing industry’s development. China’s tobacco industry, in particular, will achieve higher quality development based on the transformation and upgrading of the overall manufacturing industry.


2019 ◽  
Vol 11 (3) ◽  
pp. 914 ◽  
Author(s):  
Jianguo Zhou ◽  
Yushuo Li ◽  
Xuejing Huo ◽  
Xiaolei Xu

With the official launch of China’s national unified carbon trading system (ETS) in 2017, it has played an increasingly important role in controlling the growth of carbon dioxide emissions. One of the core issues in carbon trading is the allocation of initial carbon emissions permits. Since the industry emits the largest amount of carbon dioxide in China, a study on the allocation of carbon emission permits among China’s industrial sectors is necessary to promote industry carbon abatement efficiency. In this study, industrial carbon emissions permits are allocated to 37 sub-sectors of China to reach the emission reduction target of 2030 considering the carbon marginal abatement cost, carbon abatement responsibility, carbon abatement potential, and carbon abatement capacity. A hybrid approach that integrates data envelop analysis (DEA), the analytic hierarchy process (AHP), and principal component analysis (PCA) is proposed to allocate carbon emission permits. The results of this study are as follows: First, under the constraint of carbon intensity, the carbon emission permits of the total industry in 2030 will be 8792 Mt with an average growth rate of 3.27%, which is 1.57 times higher than that in 2016. Second, the results of the carbon marginal abatement costs show that light industrial sectors and high-tech industrial sectors have a higher abatement cost, while energy-intensive heavy chemical industries have a lower abatement cost. Third, based on the allocation results, there are six industrial sub-sectors that have obtained major carbon emission permits, including the smelting and pressing of ferrous metals (S24), manufacturing of raw chemical materials and chemical products (S18), manufacturing of non-metallic mineral products (S23), smelting and pressing of non-ferrous metals (S25), production and supply of electric power and heat power (S35), and the processing of petroleum, coking, and processing of nuclear fuel (S19), accounting for 69.23% of the total carbon emissions permits. Furthermore, the study also classifies 37 industrial sectors to explore the emission reduction paths, and proposes corresponding policy recommendations for different categories.


Sign in / Sign up

Export Citation Format

Share Document