Study on the determination method of the normal value of relative internal efficiency of the last stage group of steam turbine

Energy ◽  
2016 ◽  
Vol 98 ◽  
pp. 101-107 ◽  
Author(s):  
Li-hua Cao ◽  
Jing-wen Yu ◽  
Yong Li
2014 ◽  
Vol 672-674 ◽  
pp. 1574-1579
Author(s):  
Jian Guo Jin ◽  
Wan Ting Cui ◽  
Jing Wen Yu

The relative internal efficiency for steam turbine is one of the main economic indexes in evaluating the economic operation of steam turbine. It is usually obtained by thermal performance tests or online monitoring. In power plants, by means of measuring and calculating the relative internal efficiency for steam turbine, steam turbines’ thermal economy can be analyzed and diagnosed, and the safe operation and energy saving work can be directed. But there still exist some problems in measuring and calculating the relative internal efficiency for steam turbine at present. In this paper, the two defining methods of the relative internal efficiency are analyzed and compared. The connection of two kinds of relative internal efficiency and the same effect in evaluating the operation economy of steam turbines are indicated.Key words : Steam Turbine; Thermal Performance Test; Economic Index ;Relative Internal Efficiency


2021 ◽  
Vol 1096 (1) ◽  
pp. 012097
Author(s):  
A M Kongkong ◽  
H Setiawan ◽  
J Miftahul ◽  
A R Laksana ◽  
I Djunaedi ◽  
...  

1976 ◽  
Vol 98 (3) ◽  
pp. 573-577 ◽  
Author(s):  
J. Krzyz˙anowski ◽  
B. Weigle

In a series of experiments aimed at the visualization of the wet steam flow in the exhaust part of a 200 MW condensing steam turbine a set of periscopes and light sources was used. The aim of the experiment was: 1 – The investigation of the liquid-phase flow over the last stage stator blading of the turbine mentioned. 2 – The investigation of the gaseous-phase flow through the last stage blading at full and part load. The first part of the program partially failed due to the opaqueness of the wet steam atmosphere for the turbine load higher than 10–20 MW. The detailed experimental conditions will be described. An assessment of the primary droplet size will also be given. The preliminary results of the second part of the program will be outlined. The advantages and disadvantages of the equipment used will be discussed.


Author(s):  
Eric Liese

A dynamic process model of a steam turbine, including partial arc admission operation, is presented. Models were made for the first stage and last stage, with the middle stages presently assumed to have a constant pressure ratio and efficiency. A condenser model is also presented. The paper discusses the function and importance of the steam turbines entrance design and the first stage. The results for steam turbines with a partial arc entrance are shown, and compare well with experimental data available in the literature, in particular, the “valve loop” behavior as the steam flow rate is reduced. This is important to model correctly since it significantly influences the downstream state variables of the steam, and thus the characteristic of the entire steam turbine, e.g., state conditions at extractions, overall turbine flow, and condenser behavior. The importance of the last stage (the stage just upstream of the condenser) in determining the overall flowrate and exhaust conditions to the condenser is described and shown via results.


Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Jens Aschenbruck

The influence of a cylindrical strut shortly downstream of the bladerow on the vibration behavior of the last stage rotor blades of a single stage LP model steam turbine was investigated in the present study. Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood. To capture the influence of such an installation on the flow field characteristics, extensive flow field measurements using pneumatic probes were conducted at the turbine outlet plane. In addition, time-resolved pressure measurements along the casing contour of the diffuser and on the surface of the cylinder were made, aiming for the identification of pressure fluctuations induced by the flow around the installation. Blade vibration behavior was measured at three different operating conditions by means of a tip timing system. Despite the considerable changes in the flow field and its frequency content, no significant impact on blade vibration amplitudes were observed for the investigated case and considered operating conditions. Nevertheless, time-resolved pressure measurements suggest that notable pressure oscillations induced by the vortex shedding can reach the upstream bladerow.


Author(s):  
Kai Cheng ◽  
Zeying Peng ◽  
Gongyi Wang ◽  
Xiaoming Wu ◽  
Deqi Yu

In order to meet the high economic requirement of the 3rd generation Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) applied in currently developing nuclear power plants, a series of half-speed extra-long last stage rotating blades with 26 ∼ 30 m2 nominal exhaust annular area is proposed, which covers a blade-height range from 1600 mm to 1900 mm. It is well known that developing an extra long blade is a tough job involving some special coordinated sub-process. This paper is dedicated to describe the progress of creating a long rotating blade for a large scaled steam turbine involved in the 3rd generation nuclear power project. At first the strategy of how to determine the appropriate height for the last-stage-rotating-blade for the steam turbine is provided. Then the quasi-3D flow field quick design method for the last three stages in LP casing is discussed as well as the airfoil optimization method. Furthermore a sophisticated blade structure design and analyzing system for a long blade is introduced to obtain the detail dimension of the blade focusing on the good reliability during the service period. Thus, except for CAD and experiment process, the whole pre-design phase of the extra-long turbine blade is presented which is regarded as an assurance of the operation efficiency and reliability.


Sign in / Sign up

Export Citation Format

Share Document