Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
Latest Publications


TOTAL DOCUMENTS

64
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791850954

Author(s):  
Mario Schinnerl ◽  
Jan Ehrhard ◽  
Mathias Bogner ◽  
Joerg Seume

The measured performance maps of turbochargers which are commonly used for the matching process with a combustion engine are influenced by heat transfer and friction phenomena. Internal heat transfer from the hot turbine side to the colder compressor side leads to an apparently lower compressor efficiency at low to mid speeds and is not comparable to the compressor efficiency measured under adiabatic conditions. The product of the isentropic turbine efficiency and the mechanical efficiency is typically applied to characterize the turbine efficiency and results from the power balance of the turbocharger. This so-called ‘thermo-mechanical’ turbine efficiency is strongly correlated with the compressor efficiency obtained from measured data. Based on a previously developed one-dimensional heat transfer model, non-dimensional analysis was carried out and a generally valid heat transfer model for the compressor side of different turbochargers was developed. From measurements and ramp-up simulations of turbocharger friction power, an analytical friction power model was developed to correct the thermo-mechanical turbine efficiency from friction impact. The developed heat transfer and friction model demonstrates the capability to properly predict the adiabatic (aerodynamic) compressor and turbine performance from measurement data obtained at a steady-flow hot gas test bench.


Author(s):  
Christian Siewert ◽  
Frank Sieverding ◽  
William J. McDonald ◽  
Manish Kumar ◽  
James R. McCracken

Last stage blade rows of modern low pressure steam turbines are subjected to high static and dynamic loads. The static loads are primarily caused by the centrifugal forces due to the steam turbine’s rotational speed. Dynamic loads can be caused by instationary steam forces, for example. A primary goal in the design of modern and robust blade rows is to prevent High Cycle Fatigue caused by dynamic loads due to synchronous or non-synchronous excitation mechanisms. Therefore, it is important for the mechanical design process to predict the blade row’s vibration response. The vibration response level of a blade row can be limited by means of a damping element coupling concept. Damping elements are loosely assembled into pockets attached to the airfoils. The improvement in the blade row’s structural integrity is the key aspect in the use of a damping element blade coupling concept. In this paper, the vibrational behavior of a last stage blade row with damping elements is analyzed numerically. The calculation results are compared to results obtained from spin pit measurements for this last stage blade row coupled by damping elements.


Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Jens Aschenbruck

The influence of a cylindrical strut shortly downstream of the bladerow on the vibration behavior of the last stage rotor blades of a single stage LP model steam turbine was investigated in the present study. Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood. To capture the influence of such an installation on the flow field characteristics, extensive flow field measurements using pneumatic probes were conducted at the turbine outlet plane. In addition, time-resolved pressure measurements along the casing contour of the diffuser and on the surface of the cylinder were made, aiming for the identification of pressure fluctuations induced by the flow around the installation. Blade vibration behavior was measured at three different operating conditions by means of a tip timing system. Despite the considerable changes in the flow field and its frequency content, no significant impact on blade vibration amplitudes were observed for the investigated case and considered operating conditions. Nevertheless, time-resolved pressure measurements suggest that notable pressure oscillations induced by the vortex shedding can reach the upstream bladerow.


Author(s):  
Dickson Munyoki ◽  
Markus Schatz ◽  
Damian M. Vogt

The performance of the axial-radial diffuser downstream of the last low-pressure steam turbine stages and the losses occurring subsequently within the exhaust hood directly influences the overall efficiency of a steam power plant. It is estimated that an improvement of the pressure recovery in the diffuser and exhaust hood by 10% translates into 1% of last stage efficiency [11]. While the design of axial-radial diffusers has been the object of quite many studies, the flow phenomena occurring within the exhaust hood have not received much attention in recent years. However, major losses occur due to dissipation within vortices and inability of the hood to properly diffuse the flow. Flow turning from radial to downward flow towards the condenser, especially at the upper part of the hood is essentially the main cause for this. This paper presents a detailed analysis of the losses within the exhaust hood flow for two operating conditions based on numerical results. In order to identify the underlying mechanisms and the locations where dissipation mainly occurs, an approach was followed, whereby the diffuser inflow is divided into different sectors and pressure recovery, dissipation and finally residual kinetic energy of the flow originating from these sectors is calculated at different locations within the hood. Based on this method, the flow from the topmost sectors at the diffuser inlet is found to cause the highest dissipation for both investigated cases. Upon hitting the exhaust hood walls, the flow on the upper part of the diffuser is deflected, forming complex vortices which are stretching into the condenser and interacting with flow originating from other sectors, thereby causing further swirling and generating additional losses. The detailed study of the flow behavior in the exhaust hood and the associated dissipation presents an opportunity for future investigations of efficient geometrical features to be introduced within the hood to improve the flow and hence the overall pressure recovery coefficient.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Author(s):  
Deqi Yu ◽  
Jiandao Yang ◽  
Wei Lu ◽  
Daiwei Zhou ◽  
Kai Cheng ◽  
...  

The 1500-r/min 1905mm (75inch) ultra-long last three stage blades for half-speed large-scale nuclear steam turbines of 3rd generation nuclear power plants have been developed with the application of new design features and Computer-Aided-Engineering (CAE) technologies. The last stage rotating blade was designed with an integral shroud, snubber and fir-tree root. During operation, the adjacent blades are continuously coupled by the centrifugal force. It is designed that the adjacent shrouds and snubbers of each blade can provide additional structural damping to minimize the dynamic stress of the blade. In order to meet the blade development requirements, the quasi-3D aerodynamic method was used to obtain the preliminary flow path design for the last three stages in LP (Low-pressure) casing and the airfoil of last stage rotating blade was optimized as well to minimize its centrifugal stress. The latest CAE technologies and approaches of Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and Fatigue Lifetime Analysis (FLA) were applied to analyze and optimize the aerodynamic performance and reliability behavior of the blade structure. The blade was well tuned to avoid any possible excitation and resonant vibration. The blades and test rotor have been manufactured and the rotating vibration test with the vibration monitoring had been carried out in the verification tests.


Author(s):  
Monika Topel ◽  
Björn Laumert ◽  
Åsa Nilsson ◽  
Markus Jöcker

Liberalized electricity market conditions and concentrating solar power technologies call for increased power plant operational flexibility. Concerning the steam turbine component, one key aspect of its flexibility is the capability for fast starts. In current practice, turbine start-up limitations are set by consideration of thermal stress and low cycle fatigue. However, the pursuit of faster starts raises the question whether other thermal phenomena can become a limiting factor to the start-up process. Differential expansion is one of such thermal properties, especially since the design of axial clearances is not included as part of start-up schedule design and because its measurement during operation is often limited or not a possibility at all. The aim of this work is to understand differential expansion behavior with respect to transient operation and to quantify the effect that such operation would have in the design and operation of axial clearances. This was accomplished through the use of a validated thermo-mechanical model that was used to compare differential expansion behavior for different operating conditions of the machine. These comparisons showed that faster starts do not necessarily imply that wider axial clearances are needed, which means that the thermal flexibility of the studied turbine is not limited by differential expansion. However, for particular locations it was also obtained that axial rubbing can indeed become a limiting factor in direct relation to start-up operation. The resulting approach presented in this work serves to avoid over-conservative limitations in both design and operation concerning axial clearances.


Author(s):  
N. Courtois ◽  
F. Ebacher ◽  
P. K. Dubois ◽  
N. Kochrad ◽  
C. Landry ◽  
...  

The use of ceramics in gas turbines potentially allows for very high cycle efficiency and power density, by increasing operating temperatures. This is especially relevant for sub-megawatt gas turbines, where the integration of complex blade cooling greatly affects machine capital cost. However, ceramics are brittle and prone to fragile, catastrophic failure, making their current use limited to static and low-stress parts. Using the inside-out ceramic turbine (ICT) configuration solves this issue by converting the centrifugal blade loading to compressive stress, by using an external high-strength carbon-polymer composite rim. This paper presents a superalloy cooling system designed to protect the composite rim and allow it to withstand operating temperatures up to 1600 K. The cooling system was designed using one-dimensional (1D) models, developed to predict flow conditions as well as the temperatures of its critical components. These models were subsequently supported with computational fluid dynamics and used to conduct a power scalability study on a single stage ICT. Results suggest that the ICT configuration should achieve a turbine inlet temperature (TIT) of 1600 K with a composite rim cooling-to-main mass flow rate ratio under 5.2% for power levels above 350 kW. A proof of concept was performed by experimental validation of a small-scale 15 kW prototype, using a commercially available bismaleimide-carbon (BMI-carbon) composite rim and Inconel® 718 nickel-based alloy. The combination of numerical and experimental results show that the ICT can operate at a TIT of 1100 K without damage to the composite rim.


Author(s):  
Luis San Andrés ◽  
Feng Yu ◽  
Kostandin Gjika

Engine oil lubricated (semi) floating ring bearing (S)FRB systems in passenger vehicle turbochargers (TC) operate at temperatures well above ambient and must withstand large temperature gradients that can lead to severe thermo-mechanical induced stresses. Physical modeling of the thermal energy flow paths and an effective thermal management strategy are paramount to determine safe operating conditions ensuring the TC component mechanical integrity and the robustness of its bearing system. On occasion, the selection of one particular bearing parameter to improve a certain performance characteristic could be detrimental to other performance characteristics of a TC system. The paper details a thermohydrodynamic model to predict the hydrodynamic pressure and temperature fields and the distribution of thermal energy flows in the bearing system. The impact of the lubricant supply conditions (pressure and temperature), bearing film clearances, oil supply grooves on the ring ID surface are quantified. Lubricating a (S)FRB with either a low oil temperature or a high supply pressure increases (shear induced) heat flow. A lube high supply pressure or a large clearance allow for more flow through the inner film working towards drawing more heat flow from the hot journal, yet raises the shear drag power as the oil viscosity remains high. Nonetheless, the peak temperature of the inner film is not influenced much by the changes on the way the oil is supplied into the film as the thermal energy displaced from the hot shaft into the film is overwhelming. Adding axial grooves on the inner side of the (S)FRB improves its dynamic stability, albeit increasing the drawn oil flow as well as the drag power and heat flow from the shaft. The predictive model allows to identify a compromise between different parameters of groove designs thus enabling a bearing system with a low power consumption.


Sign in / Sign up

Export Citation Format

Share Document