Research on the Measuring and Calculating Methods of the Relative Internal Efficiency for Steam Turbine

2014 ◽  
Vol 672-674 ◽  
pp. 1574-1579
Author(s):  
Jian Guo Jin ◽  
Wan Ting Cui ◽  
Jing Wen Yu

The relative internal efficiency for steam turbine is one of the main economic indexes in evaluating the economic operation of steam turbine. It is usually obtained by thermal performance tests or online monitoring. In power plants, by means of measuring and calculating the relative internal efficiency for steam turbine, steam turbines’ thermal economy can be analyzed and diagnosed, and the safe operation and energy saving work can be directed. But there still exist some problems in measuring and calculating the relative internal efficiency for steam turbine at present. In this paper, the two defining methods of the relative internal efficiency are analyzed and compared. The connection of two kinds of relative internal efficiency and the same effect in evaluating the operation economy of steam turbines are indicated.Key words : Steam Turbine; Thermal Performance Test; Economic Index ;Relative Internal Efficiency

Author(s):  
Yifan Wu ◽  
Wei Li ◽  
Deren Sheng ◽  
Jianhong Chen ◽  
Zitao Yu

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.


Author(s):  
Andreas Pickard

At the start of this new century, environmental regulations and free-market economics are becoming the key drivers for the electricity generating industry. Advances in Gas Turbine (GT) technology, allied with integration and refinement of Heat Recovery Steam Generators (HRSG) and Steam Turbine (ST) plant, have made Combined Cycle installations the most efficient of the new power station types. This potential can also be realized, to equal effect, by adding GT’s and HRSG’s to existing conventional steam power plants in a so-called ‘repowering’ process. This paper presents the economical and environmental considerations of retrofitting the steam turbine within repowering schemes. Changing the thermal cycle parameters of the plant, for example by deletion of the feed heating steambleeds or by modified live and reheat steam conditions to suit the combined cycle process, can result in off-design operation of the existing steam turbine. Retrofitting the steam turbine to match the combined cycle unit can significantly increase the overall cycle efficiency compared to repowering without the ST upgrade. The paper illustrates that repowering, including ST retrofitting, when considered as a whole at the project planning stage, has the potential for greater gain by allowing proper plant optimization. Much of the repowering in the past has been carried out without due regard to the benefits of re-matching the steam turbine. Retrospective ST upgrade of such cases can still give benefit to the plant owner, especially when it is realized that most repowering to date has retained an unmodified steam turbine (that first went into operation some decades before). The old equipment will have suffered deterioration due to aging and the steam path will be to an archaic design of poor efficiency. Retrofitting older generation plant with modern leading-edge steam-path technology has the potential for realizing those substantial advances made over the last 20 to 30 years. Some examples, given in the paper, of successfully retrofitted steam turbines applied in repowered plants will show, by specific solution, the optimization of the economics and benefit to the environment of the converted plant as a whole.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Simon Hecker ◽  
Peter Dumstorff ◽  
Henning Almstedt ◽  
...  

The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered.


1999 ◽  
Author(s):  
Alejandro Zaleta-Aguilar ◽  
Armando Gallegos-Muñoz ◽  
Antonio Valero ◽  
Javier Royo

Abstract This work builds on the previous work on “Exergoeconomics Fuel-Impact” developed by Torres (1991), Valero et. al. (1994), and compares it with respect to the Performance Test Code (PTC’s) actually applied in power plants (ASME/ANSI PTC-6, 1970). With the objective of proposing procedures for PTC’s in power plant’s based on an exergoeconomics point of view. It was necessary to validate the Fuel-Impact Theories, and improve the conceptual expression, in order to make it more applicable to the real conditions in the plant. By mean of a program using simulation and field data, it was possible to validate and compare the procedures. This work has analyzed an example of a 110 MW Power Plant, in which all the exergetic costs have been determined for the steam cycle, and a fuel-impact analysis has been developed for the steam turbines at the design and off-design conditions. The result of the fuel-impact analysis is compared with respect to a classical procedure related in ASME-PTC-6.


Author(s):  
Sazzadur Rahman ◽  
Waheed Abbasi ◽  
Thomas W. Joyce

Fossil steam turbines were designed for approximately thirty years of reliable operation based on a normal duty cycle. During operation, highly stressed components of steam turbine power plants undergo a change in material properties due to cyclic stress and exposure to different temperatures. Among all the components of a steam turbine, the steam chest is affected the most as it experiences a wide variation of stresses and loads during transient events and steady-state operation. These factors can strongly influence the metallurgical condition and overall reliable life of steam chests. In this paper, Siemens’ overall approach for lifetime assessments will be discussed with a real life example on a 40 year old Westinghouse-design steam chest. The methodology and the findings from the assessment are also discussed.


Author(s):  
Yasuhiro Yoshida ◽  
Kazunori Yamanaka ◽  
Atsushi Yamashita ◽  
Norihiro Iyanaga ◽  
Takuya Yoshida

In the fast start-up for combined cycle power plants (CCPP), the thermal stresses of the steam turbine rotor are generally controlled by the steam temperatures or flow rates by using gas turbines (GTs), steam turbines, and desuperheaters to avoid exceeding the thermal stress limits. However, this thermal stress sensitivity to steam temperatures and flow rates depends on the start-up sequence due to the relatively large time constants of the heat transfer response in the plant components. In this paper, a coordinated control method of gas turbines and steam turbine is proposed for thermal stress control, which takes into account the large time constants of the heat transfer response. The start-up processes are simulated in order to assess the effect of the coordinated control method. The simulation results of the plant start-ups after several different cool-down times show that the thermal stresses are stably controlled without exceeding the limits. In addition, the steam turbine start-up times are reduced by 22–28% compared with those of the cases where only steam turbine control is applied.


Author(s):  
Rainer Quinkertz ◽  
Thomas Thiemann ◽  
Kai Gierse

High efficiency and flexible operation continue to be the major requirements for power generation because of the benefits of reduced emissions and reduced fuel consumption, i.e. reduced operating costs. Ultra super critical (USC) steam parameters are the basis for state of the art technology of coal fired power plants with highest efficiency. An important part of the development process for advanced steam turbines is product validation. This step involves more than just providing evidence of customer guaranteed values (e.g. heat rate or electric output). It also involves proving that the design targets have been achieved and that the operational experience is fed back to designers to further develop the design criteria and enable the next step in the development of highly sophisticated products. What makes product validation for large size power plant steam turbines especially challenging is the fact that, due to the high costs of the required infrastructure, steam turbine manufacturers usually do not have a full scope / full scale testing facility. Therefore, good customer relations are the key to successful validation. This paper describes an extensive validation program for a modern state of the art ultra supercritical steam turbine performed at an operating 1000 MW steam power plant in China. Several measuring points in addition to the standard operating measurements were installed at one of the high pressure turbines to record the temperature distribution, e.g. to verify the functionality of the internal cooling system, which is an advanced design feature of the installed modern high pressure steam turbines. Predicted 3D temperature distributions are compared to the actual measurements in order to verify and evaluate the design rules and the design philosophy applied. Conclusions are drawn regarding the performance of modern 3D design tools applied in the current design process and an outlook is given on the future potential of modern USC turbines.


Author(s):  
Anup Singh ◽  
Don Kopecky

Most of the recent combined cycle plants have been designed and constructed as Greenfield Plants. These new plants have been designed mostly as Merchant Plants, owned and operated by Independent Power Producers. There is about 260,000 MW of conventional coal-fired and gas-fired capacity in the USA that is more than 30 years old. About 30,000 MW of conventional gas-fired capacity exists in the area of The Electric Reliability Council of Texas (ERCOT) with relatively poor heat rates in comparison to modern combined cycle plants. These plants are good candidates for HRSG repowering. In addition, there are several coal-fired units in the 200 MW range with steam turbines in relatively good shape or in a condition that can be refurbished and used in repowering. The installed cost of repowered (also called Brownfield) capacity is about 20%–40% less than for comparable Greenfield capacity. There are also other advantages to repowering. Since the site is already existing, it is easier to get the various environmental and construction permits. The efficiency of the repowered units will be significantly higher than the existing units in their current status thus increasing the overall performance of the entire system. The paper will discuss various considerations required for repowering, including steam turbine refurbishment, demolition/relocation of existing equipment, recent cost studies, and various considerations for equipment such as HRSGs.


Author(s):  
Dieter Bohn ◽  
Christian Betcher ◽  
Karsten Kusterer ◽  
Kristof Weidtmann

Abstract As a result of an ever-increasing share of volatile renewable energies on the world wide power generation, conventional power plants face high technical challenges in terms of operational flexibility. Consequently, the number of startups and shutdowns grows, causing high thermal stresses in the thick-walled components and thus reduces lifetime and increases product costs. To fulfill the lifetime requirements, an accurate prediction of the metal temperature distribution inside these components is crucial. The objective of this paper is to understand the predominant basic heat transfer mechanisms during an IP steam turbine startup. Convective heat transport is described by means of HTC's as a function of dimensionless parameters, considering predominant flow structures. Based on steady-state and transient CHT- simulations the HTC's are derived during startup and compared to correlations from the literature. The simulations outline that the local HTC generally increases with increasing axial and circumferential Reynolds' number and is mostly influenced by vortex systems such as passage and horseshoe vortices. The HTC's at the turbine stage surfaces can be modeled with a high accuracy using a linear relation with respect to the total Reynolds' number. The comparison illustrates that the correlations underestimate the convective heat transfer by approx. 40% on average. Results show that special correlation-based approaches from the literature are a particularly efficient procedure to predict the heat transfer within steam turbines. in the design process. Overall, the computational effort can be significantly reduced by applying analytical correlations while maintaining a satisfactory accuracy.


Sign in / Sign up

Export Citation Format

Share Document