Impact of fuel spray angles and injection timing on the combustion and emission characteristics of a high-speed diesel engine

Energy ◽  
2016 ◽  
Vol 107 ◽  
pp. 572-579 ◽  
Author(s):  
Hyung Jun Kim ◽  
Su Han Park ◽  
Chang Sik Lee
Author(s):  
Srinath Pai ◽  
Abdul Sharief ◽  
Shiva Kumar

A single cylinder diesel engine upgraded to operate Common Rail Direct Injection (CRDI) system and employed in this investigation. Tests were conducted on this engine using High-Speed diesel (HSD) and Simarouba biodiesel (SOME) blends to determine the influence of Injection Pressure (IP) and Injection Timing (IT) on the performance and emissions. Four unique IP of 400 bar to 1000 bar, in steps of 200 bar and four differing ITs of 10°, 13°, 15° and 18° before Top Dead Center (bTDC) combinations were attempted for the 25% to full load. Compression Ratio (CR) of 16.5 and Engine speed of 1500 RPM was kept constant during all trails. Critical performance parameter like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed, primary emission parameters of the diesel engine The NOx and Smoke opacity were recorded. Finally, the outcomes of each combination were discussed.


2020 ◽  
pp. 163-163
Author(s):  
Zixu Guan ◽  
Yi Cui

Aiming at the thermal load problem of the four-stroke high-speed diesel engine piston, a piston thermal fluid-solid coupling model based on the combustion thermal boundary and the two-phase flow oscillation cooling thermal boundary is established. The model considers the problem that the piston can?t fill the cooling cavity due to the reciprocating motion. The effects of different engine speeds and the injection speed on the filling rate are studied. The variation curves of the filling rate of the oil in the cooling cavity are simulated, and the transient heat transfer coefficient and temperature of each crank angle are obtained. The average value is then analyzed by heat flow-solid coupling, and the influence of the filling rate of the piston cavity on the temperature field of the piston is obtained. Through the comparison of the experimental results of the hardness plug measurement method, the calculation of the model is accurate and can be well used for the simulation of the piston temperature field and the evaluation of the thermal load at the critical position. Based on this model, the regularity analysis of the influencing factors of the piston thermal load is carried out. The influencing factors include the filling rate of the cavity, the air-fuel ratio, the injection timing, etc., and finally the engine operating range that meets the heat load requirements is obtained.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


Sign in / Sign up

Export Citation Format

Share Document