scholarly journals Influence of Ultra Injection Pressure with Dynamic Injection Timing on CRDI Engine Performance Using Simarouba Biodiesel Blends

Author(s):  
Srinath Pai ◽  
Abdul Sharief ◽  
Shiva Kumar

A single cylinder diesel engine upgraded to operate Common Rail Direct Injection (CRDI) system and employed in this investigation. Tests were conducted on this engine using High-Speed diesel (HSD) and Simarouba biodiesel (SOME) blends to determine the influence of Injection Pressure (IP) and Injection Timing (IT) on the performance and emissions. Four unique IP of 400 bar to 1000 bar, in steps of 200 bar and four differing ITs of 10°, 13°, 15° and 18° before Top Dead Center (bTDC) combinations were attempted for the 25% to full load. Compression Ratio (CR) of 16.5 and Engine speed of 1500 RPM was kept constant during all trails. Critical performance parameter like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed, primary emission parameters of the diesel engine The NOx and Smoke opacity were recorded. Finally, the outcomes of each combination were discussed.

2010 ◽  
Vol 7 (2) ◽  
pp. 399-406 ◽  
Author(s):  
M. Venkatraman ◽  
G. Devaradjane

In the present investigation, tests were carried out to determine engine performance, combustion and emissions of a naturally aspirated direct injection diesel engine fueled with diesel and Jatropha Methyl ester and their blends (JME10, JME20 and JME30). Comparison of performance and emission was done for different values of compression ratio, injection pressure and injection timing to find best possible combination for operating engine with JME. It is found that the combined compression ratio of 19:1, injection pressure of 240 bar and injection timing of 27?bTDC increases the BTHE and reduces BSFC while having lower emissions.From the investigation, it is concluded that the both performance and emissions can considerably improved for Methyl ester of jatropha oil blended fuel JME20 compared to diesel.


2014 ◽  
Vol 18 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Pundlik Ghodk ◽  
Jiwak Suryawanshi

Direct injection diesel engine combustion system offers improvements in performance and fuel economy benefits. 4 valves per cylinder, turbocharged and intercooled diesel engine became trustworthy for automobile application. Electronic diesel control, use of common rail with increase in injection pressures, and flexibility in injection control has changed the image of diesel engine. Evolutions in piston crown shape, intake ports with different swirl level helped to enhance mixing of air and fuel for better performance and emissions. In this describe the work done on 4 cylinder diesel engine, upgraded to BS5 (Bharat stage 5) emission norms with 20% power increase. A systematic approach of engine development was fallowed. Engine performance prediction was done using AVL Boost software. Boost Model was validated with existing engine cylinder pressure. Combustion parameters have been varied to predict higher power. Vehicle model has been build using AVL cruise software and used to obtain steady state load- speed points. Engine emission development has been done on engine test bench. Typical hardware like piston crown, turbocharger, EGR system with EGR cooler and various combustion parameters were tested and optimized. Suitable after-treatment system was selected optimized for precious metal loading reach Bharat stage 5 emissions.


1999 ◽  
Vol 123 (1) ◽  
pp. 167-174 ◽  
Author(s):  
P. J. Tennison ◽  
R. Reitz

An investigation of the effect of injection parameters on emissions and performance in an automotive diesel engine was conducted. A high-pressure common-rail injection system was used with a dual-guided valve covered orifice nozzle tip. The engine was a four-valve single cylinder high-speed direct-injection diesel engine with a displacement of approximately 12 liter and simulated turbocharging. The engine experiments were conducted at full load and 1004 and 1757 rev/min, and the effects of injection pressure, multiple injections (single vs pilot with main), and pilot injection timing on emissions and performance were studied. Increasing the injection pressure from 600 to 800 bar reduced the smoke emissions by over 50 percent at retarded injection timings with no penalty in oxides of nitrogen NOx or brake specific fuel consumption (BSFC). Pilot injection cases exhibited slightly higher smoke levels than single injection cases but had similar NOx levels, while the single injection cases exhibited slightly better BSFC. The start-of-injection (SOI) of the pilot was varied while holding the main SOI constant and the effect on emissions was found to be small compared to changes resulting from varying the main injection timing. Interestingly, the point of autoignition of the pilot was found to occur at a nearly constant crank angle regardless of pilot injection timing (for early injection timings) indicating that the ignition delay of the pilot is a chemical delay and not a physical (mixing) one. As the pilot timing was advanced the mixture became overmixed, and an increase of over 50 percent in the unburned hydrocarbon emissions was observed at the most advanced pilot injection timing.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
A. Prabu

This study evaluates the outcomes of antioxidants and nanoparticles as additives with biodiesel diesel blends on the engine working characteristics, carried on a single cylinder direct injection (DI) diesel engine, operated at invariable engine speed of 1500 rpm, invariable injection timing of 26 deg before top dead center with invariable injection pressure of 216 bar, under five different engine load conditions (0.08, 0.15, 0.23, 0.30, 0.45, and 0.53 MPa). The antioxidants and nanoparticles blended test fuels are used as fuels in this experimental investigation. The antioxidant as additive in fuel found to be more effective in suppressing the NO emission by disrupting the chain propagating reactions, trapping free radicals, and decomposing peroxides. The high surface area to volume of the nanoparticles acts as fuel borne catalyst by ameliorating the engine working characteristics and downplays the NO emission by buffering the oxygen molecule. The obtained experimental results indicates that B20SNAlCe test fuel enhances engine brake thermal efficiency (BTE) by 13% and reduces level of pollutants such as unburned hydrocarbon (UBHC) by 38%, nitric oxide by 32%, smoke opacity by 21%, and carbon monoxide by 60% in compared with B100.


2002 ◽  
Vol 124 (3) ◽  
pp. 636-644 ◽  
Author(s):  
J. M. Desantes ◽  
J. V. Pastor ◽  
J. Arre`gle ◽  
S. A. Molina

To fulfill the commitments of future pollutant regulations, current development of direct injection (DI) Diesel engines requires to improve knowledge on the injection/combustion process and the effect of the injection parameters and engine operation conditions upon the spray and flame characteristics and how they affect engine performance and pollutant emissions. In order to improve comprehension of the phenomena inherent to Diesel combustion, a deep experimental study has been performed in a single-cylinder engine with the main characteristics of a six-cylinder engine passing the EURO III legislation. Some representative points of the 13-mode engine test cycle have been considered modifying the nominal values of injection pressure, injection load, intake pressure, engine speed, and injection timing. The study combines performance and emissions experimental measurements together with heat release law (HRL) analysis and high-speed visualization. Controlling parameters for BSFC, NOx, and soot emissions are identified in the last part of the paper.


Transport ◽  
2010 ◽  
Vol 25 (2) ◽  
pp. 116-128 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas

The article deals with the testing results of a four stroke four cylinder, DI diesel engine operating on pure rapeseed oil (RO) and its 2.5vol%, 5vol% and 7.5vol% blends with ethanol (ERO) and petrol (PRO). The purpose of this study is to examine the effect of ethanol and petrol addition to RO on blend viscosity, percentage changes in brake mean effective pressure (bmep), brake specific fuel consumption (bsfc), the brake thermal efficiency (çe) of a diesel engine and its emission composition, including NO, NO2, NOX, CO, CO2, HC and the smoke opacity of exhausts. The addition of 2.5, 5 and 7.5vol% of ethanol and the same percentage of petrol into RO, at a temperature of 20 °C, diminish the viscosity of the blends by 9.2%, 21.3%, 28.3% and 14.1%, 24.8%, 31.7% respectively. Heating biofuels up to a temperature of 60 °C, diminishes the kinematic viscosity of RO, blends ERO2.5–7.5 and PRO2.5–7.5 4.2, 3.9–3.8 and 3.9–3.7 times accordingly. At a speed of 1400–1800 min‐1, bmep higher by 1.3% if compared with that of RO (0.772–0.770 MPa) ensures blend PRO2.5, whereas at a rated speed of 2200 min‐1 , bmep higher by 5.6–2.7% can be obtained when fuelling the loaded engine, ë = 1.6, with both PRO2.5–5 blends. The bsfc of the engine operating on blend PRO2.5 at maximum torque and rated power is respectively 3.0% and 5.5% lower. The highest brake thermal efficiency at maximum torque (0.400) and rated power (0.415) compared to that of RO (0.394) also suggests blend PRO2.5. The largest increase in NOXemissions making 1907 ppm (24.8%) and 1811 ppm (19.6%) compared to that of RO was measured from a more calorific blend PRO7.5 (9.99% oxygen) at low (1400 min‐1) and rated (2200 min‐1) speeds. The emission of carbon monoxide from blends ERO2.5–5 throughout the whole speed range runs lower from 6.1% to 32.9% and the smoke opacity of the fully loaded engine changes from 5.1% which is a higher to 46.4% which is a lower level if compared to the corresponding data obtained using pure RO. The CO2 emissions of carbon monoxide and the temperature of the exhausts generated by the engine running at a speed of 2200 min‐1 diminish from 7.8 vol% to 6.3vol% and from 500 °C to 465 °C due to the addition of 7.5vol% of ethanol to RO.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Tadanori Yanai ◽  
Xiaoye Han ◽  
Graham T. Reader ◽  
Ming Zheng ◽  
Jimi Tjong

The characteristics of combustion, emissions, and thermal efficiency of a diesel engine with direct injection (DI) neat n-butanol were investigated. The engine ran at a load of 6.5–8.0 bar indicated mean effective pressure (IMEP) at 1500 rpm engine speed and the injection pressure was controlled to 900 bar. The intake boost pressure, injection timing, and EGR rate were adjusted to investigate the engine performance. The tests demonstrated that neat n-butanol had the potential to achieve ultralow emissions. However, challenges related to reducing the pressure rise rate and improving the ignition controllability were identified.


2021 ◽  
Vol 264 ◽  
pp. 04021
Author(s):  
Sarvar Kadirov ◽  
Madamin Aripdjanov ◽  
Obidjon Ergashev ◽  
Ravshan Iskandarov

This article discusses the main history of the creation of high-speed short-stroke diesel engines and an assessment of the main factors that most significantly affect the working process of a diesel engine. When developing a new design of a high-speed diesel engine, it is necessary to pay special attention to the following factors: the intensity of the air charge, injection pressure parameters, the shape of the combustion chamber and the choice of the best option. Research carried out with a 7 x 0.15 mm nozzle in a wide range of speed changes (n = 1000 + 2800 min-1) shows that it is possible to find a position of the widened valve at which optimal results are obtained at medium and high rotational speeds, and on small - engine performance will deteriorate slightly.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


Sign in / Sign up

Export Citation Format

Share Document